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Abstract
Γδ T cell infiltration into tumours usually correlates with improved patient outcome, but both tumour-promoting and tumori-
cidal effects of γδ T cells have been documented. Human γδ T cells can be divided into functionally distinct subsets based on 
T cell receptor (TCR) Vδ usage. Still, the contribution of these different subsets to tumour immunity remains elusive. Here, 
we provide a detailed γδ T cell profiling in colon tumours, using mass and flow cytometry, mRNA quantification, and TCR 
sequencing. δ chain usage in both the macroscopically unaffected colon mucosa and tumours varied considerably between 
patients, with substantial fractions of Vδ1, Vδ2, and non-Vδ1 Vδ2 cells. Sequencing of the Vδ complementarity-determining 
region 3 showed that almost all non-Vδ1 Vδ2 cells used Vδ3 and that tumour-infiltrating γδ clonotypes were unique for 
every patient. Non-Vδ1Vδ2 cells from colon tumours expressed several activation markers but few NK cell receptors and 
exhaustion markers. In addition, mRNA analyses showed that non-Vδ1 Vδ2 cells expressed several genes for proteins with 
tumour-promoting functions, such as neutrophil-recruiting chemokines, Galectin 3, and transforming growth factor-beta 
induced. In summary, our results show a large variation in γδ T cell subsets between individual tumours, and that Vδ3 cells 
make up a substantial proportion of γδ T cells in colon tumours. We suggest that individual γδ T cell composition in colon 
tumours may contribute to the balance between favourable and adverse immune responses, and thereby also patient outcome.
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Abbreviations
CDR3  Complementarity-determining region 3
CRC   Colorectal cancer
MSI  Microsatellite instable
MSS  Microsatellite stable
PBMC  Peripheral blood mononuclear cells
PMA  Phorbol 12-myristate 13-acetate
TCR   T cell receptor
TGFBI  Transforming growth factor-beta induced

Background

Γδ T cells are unconventional T cells expressing a semi-
variable T cell receptor (TCR) composed of a limited selec-
tion of γ and δ chains, which bind to invariant MHC I-like 
molecules, as well as other stress-induced cell surface 
proteins. Cognate TCR binding leads to immediate effec-
tor functions, such as cytotoxicity and cytokine secretion. 
Human γδ T cells are usually characterized based on δ chain 
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usage, where Vδ1, Vδ2, and Vδ3 are the most common. Fur-
thermore, the preferential pairing of different δ and γ chains 
divide γδ T cells into additional subsets [1, 2]. Oligoclonal 
populations of γδ T cells are present in different tissues, 
such as mucosal tissues, skin, and peripheral blood [3]. In 
humans, Vδ2 cells dominate in the circulation, while Vδ1 
cells are more common in the intestinal mucosa [1–3]. In 
addition to the TCR, both Vδ1 and Vδ2 cells express various 
NK cell receptors that react to the expression of surface mol-
ecules induced in both infected and transformed cells. Espe-
cially the expression of NKp30 and NKp46 has been shown 
to delineate subsets of γδ T cells with increased cytotoxic 
capacity towards tumour cells [4, 5]. When activated, γδ T 
cells also produce pro-inflammatory cytokines in addition 
to their cytotoxic functions [6]. In a cancer setting, the infil-
tration of γδ T cells has been associated with an improved 
clinical outcome in studies across several types of haemato-
logical malignancies and solid tumours, including colorectal 
cancer (CRC) [7–9]. However, in studies with a CRC focus, 
γδ T cells were both positively and negatively correlated to 
a favourable patient outcome [8, 10, 11]. Generally, anti-
tumour immunity and a beneficial patient response are com-
monly associated with cytotoxicity and the production of 
Th1 type cytokines [12–14]. As conventional T cells, γδ T 
cells can be divided into different subsets based on cytokine 
production. In tumour immunity, the two best described are 
γδ1 and γδ17 cells, with a cytokine profile similar to Th1 
and Th17 cells, respectively, and the proportions of these 
cells detected in different studies vary considerably [15, 16].

There is currently a lack of understanding of which γδ 
T cell subsets contribute to a pro- or anti-tumour immune 
response, and how they distribute in individual tumours. 
In this study, we could show that γδ T cells-infiltrating 
colon tumours express Vδ1, Vδ2, or Vδ3 TCRδ chains and 
that these subsets are distinct from circulating γδ T cells. 
The proportions of these cells varied considerably among 
tumours, as did the clonotypes detected, which were all pri-
vate to a single tumour. We identified a substantial pres-
ence of Vδ3 cells in colon tumours which had reduced 
anti-tumour effector functions and expressed several tumour-
promoting mediators.

Material and methods

Patient samples

This study was performed at the Sahlgrenska Academy at 
the University of Gothenburg together with the Sahlgrenska 
University Hospital. All procedures and experiments were 
performed in accordance with the Declaration of Helsinki 
and were approved by the Regional Research Ethics Com-
mittee of western Sweden (reference no 249–15). Venous 

blood, macroscopically unaffected colon mucosa (collected 
at least 10 cm away from the tumour border), and tumour tis-
sue were collected from 45 colon cancer patients (25 males 
and 20 females, aged 38 to 90, median age 75) undergoing 
resection surgery for stage I–IV tumours. Cells from 15 of 
these patients were used for mass cytometry, 27 for flow 
cytometry analyses, and 3 for both mass and flow cytom-
etry. See Suppl. Table S1 for additional patient and tumour 
characteristics. In a separate set of 10 patients, comprising 7 
males and 3 females, aged 51–89 (Suppl. Table S1), we ana-
lysed the TCR repertoire in resected tumour tissues. None of 
the patients had undergone radio- or chemotherapy during 
the last 2 years. Microsatellite status was determined as pre-
viously described using the microsatellite instability (MSI) 
Analysis System v.1.2 (ProMega) [17]. MSI-High (MSI-H) 
tumours were defined as tumours with more than 1 marker 
showing instability, MSI-Low (MSI-L) as tumours with one 
marker showing instability, and microsatellite stable (MSS) 
tumours as tumours with no markers showing instability.

Cell isolation and stimulation

The tissue material was collected during surgery and trans-
ported in ice-cold PBS before isolation of lymphocytes 
within two hours, and lamina propria lymphocytes were 
isolated as previously described [18]. Venous blood sam-
ples were collected in heparinized tubes during surgery, and 
peripheral blood mononuclear cells (PBMCs) were isolated 
by density-gradient centrifugation using Ficoll-Paque (GE 
Healthcare Bio-Sciences AB).

Enrichment of  CD45+ cells was performed before mass 
cytometry using the REAlease TIL MicroBead kit (Milte-
nyi). Cells were kept overnight at 37 °C for functional assays 
and mass cytometry analysis or at 4 °C for phenotypic analy-
sis using flow cytometry. For cytokine production analyses, 
cells were incubated overnight in culture medium at 37 °C 
before polyclonal stimulation the following morning using 
50 ng/mL of phorbol 12-myristate 13-acetate (PMA) and 
680 ng/mL of ionomycin calcium salt (Sigma-Aldrich) for 
4 h, together with a protein transport inhibitor (BD Golgi 
stop, BD Biosciences).

γδ TCR sequencing

Resected tissue samples were cut into smaller pieces and 
immediately frozen and stored in liquid nitrogen in advanced 
DMEM/F12 (Thermo Fisher) substituted with 100 U/
ml of Penicillin and 100 µg /ml of Streptomycin, 10 mM 
HEPES, Glutamax according to the supplier’s recommen-
dation (Gibco), and 10% dimethylsulphoxid (DMSO) until 
isolation of lymphocytes as previously described [19]. γδ 
TCR sequencing was performed on DNA extracted from 
the isolated lymphocytes with the QIAamp Blood Mini 
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Kit (Qiagen), according to the manufacturer’s instructions. 
A total of 1.5 µg DNA was analysed using SiMSen-Seq 
[20], except for one patient (Patient#405) where only 1 µg 
DNA was available. Library quantity and size distribu-
tion were assessed on a Fragment Analyzer using HS NGS 
Fragment kit (Agilent Technologies). The libraries were 
pooled at equimolar concentration and purified with a Pip-
pin Prepp using 2% agarose gel reagent kit (Sage Science). 
Final libraries were quantified with quantitative PCR and 
then sequenced on the MiniSeq Sequencing System using 
paired-end and 2 times 150 bp sequencing (Illumina). The 
raw sequencing data in fastq format have been deposited to 
the NCBI short read archive (SRA; https:// www. ncbi. nlm. 
nih. gov/ sra) with accession number PRJNA1107040.

The raw sequencing reads for γδ TCR sequencing were 
analysed with the MIGEC bioinformatics pipeline [21], 
including unique molecular identifier extraction, consensus 
read assembly, and annotation of the complementarity-deter-
mining region 3 (CDR3) region including annotation of V, 
D, and J segments, by blasting to known CDR3 sequences.

Mass cytometry

Mass cytometry analysis was performed as previously 
described [22], using live cell barcoding with CD45 antibod-
ies conjugated to different isotopes to individually label cells 
from blood, unaffected colon mucosa, and tumour samples 
[23]. For a detailed antibody list, see Suppl. Table S2.

Flow cytometry

Single cell suspensions were stained with a live/dead exclu-
sion dye followed by antibodies to surface antigens. For 
detection of cytokines and GrB, cells were fixed and per-
meabilised using the FoxP3 staining kit (eBioscience). For 
a detailed antibody list, see Suppl. Table S3. The samples 
were acquired on a BD LSR Fortessa. Samples with fewer 
than 50 cells of any of the investigated subsets (Vδ1, Vδ2, 
and non-Vδ1Vδ2 cells) were not included in the phenotypic 
or functional analyses.

mRNA quantification

Live Vδ1, Vδ2, and non-Vδ1Vδ2 cells from 4 colon tumours 
were sorted using a BD FACS-Aria Fusion. Multiplex 
mRNA quantification was performed using the nCounter 
Analysis system together with the nCounter human Immu-
nology v2 panel (Nanostring) at KIGene (Karolinska Insti-
tutet, Stockholm). Nanostring data were normalized to adjust 
for platform-associated and sample input variations and 
thresholds were set according to Nanostring guidelines (0, 
3–3 for the positive control normalization and 0, 1–10 for 
the housekeeping gene normalization). The Vδ1 cells from 

one patient were subsequently excluded from analysis due to 
low RNA quality. The normalized data have been deposited 
to Gene Expression Omnibus (GEO; https:// www. ncbi. nlm. 
nih. gov/ geo/) with accession number GSE266504.

Immunofluorescence

Four-μm cuts from formalin-fixed paraffin-embedded tis-
sue blocks of unaffected mucosa and colorectal tumours 
were mounted on Superfrost Plus microscope slides. Sec-
tions were deparaffinized and rehydrated, and antigens 
were unmasked with pH9 Tris–EDTA buffer. Tissue was 
stained with CD3 (A0452, Agilent; Opal 570), CD8α 
(SP16, Thermo Fisher Scientific; Opal 620), TCRδ (H41, 
Santa Cruz Biotechnologies; Opal 690), pan-cytokeratin 
(KRT/1877R, Abcam; Opal 520), respectively, using the 
Opal Polaris 7-Color Manual IHC Kit (Akoya Biosciences). 
Subsequently, nuclei were stained with spectral DAPI 
(Akoya Biosciences) and slides were mounted with ProLong 
Glass Antifade Mounting media (Thermo Fisher Scientific). 
Tissue sections were scanned with the Metafer Slide Scan-
ning Platform (Axio Imager.Z2 Microscope and 20x/0.8/
air objective, Zeiss) equipped with a SpectraSplit filter sys-
tem (Kromnigon). Images were analysed with Strataquest 
(TissueGnostics).

Data processing and statistical analysis

Mass cytometry data were analysed using OMIQ version 10. 
All clusters that contributed with less than 1% of all γδ T 
cells were excluded from the analysis. Data from the multi-
plex mRNA quantification were analysed using the Nsolver 
software (version 4). Flow cytometry data were analysed 
using FlowJo version 10 and OMIQ version 10. Gini-Simp-
son diversity index was calculated using the Diverse package 
in R (version 0.1.5). Statistical analyses of paired data were 
performed using two-tailed Wilcoxon matched-pairs signed 
rank test and of unpaired data using two-tailed Mann–Whit-
ney test. When comparing three groups of matched data, 
the Friedman test followed by Dunn’s post-test was used 
to achieve multiplicity adjusted P values. Statistical tests 
were performed using GraphPad PRISM version 9. P-val-
ues < 0.05 were considered statistically significant.

Results

γδ T cells in colon tumours

To investigate the subsets of γδ T cells present in colon 
tumours, we used fresh samples recovered from patients 
undergoing resection surgery. Using flow cytometry, γδ T 
cells were identified as  CD3+ cells stained by a pan-γδ-TCR 

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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antibody but not by a pan-αβ-TCR antibody (Fig. 1A). γδ T 
cell frequencies were significantly lower in both the tumours 
and the macroscopically unaffected colon compared to in the 
blood (Fig. 1B). Using fluorescence microscopy, we also 
analysed the numbers of γδ T cells present in the tumours 
and unaffected colon mucosa. Here, the numbers of γδ T 
cells were also significantly reduced (p < 0.05) in the tumour 
compared to the unaffected colon mucosa from the same 
individuals (Fig. 1C, Suppl. Fig. S1). These analyses also 
showed that γδ T cells in the tumours were primarily posi-
tioned in the stroma rather than in the tumour epithelium.

To further define the TCRs of tumour-infiltrating γδ T 
cells, we analysed the Vδ chain usage (Fig. 1D). The domi-
nating subset in the circulation was Vδ2 cells. In the tis-
sue, there were also considerable numbers of Vδ2 cells in 
both unaffected mucosa and tumours, while Vδ1 cells were 
less numerous in most patients. We could also document a 
substantial proportion of γδ T cells that did neither express 
Vδ1 nor Vδ2. These non-Vδ1Vδ2 cells were present in both 
tumour and unaffected mucosa from all patients (Fig. 1E–G). 
Quantitative Vδ CDR3 sequencing analyses clearly showed 
that the large majority of non-Vδ1 Vδ2 cells in the tumours 
used Vδ3. Only one out of ten patients displayed a sizeable 
Vδ5 population alongside the Vδ3 cells (Fig. 1H, I, J).

Vδ2 cells are divided into two main types based on their 
usage of the Vγ9 chain. The classical, innate-like Vγ9+Vδ2+ 
cells are the most common, while the rarer Vγ9−Vδ2+ cells 
have been described as a more adaptive-like cell type with 
a more diverse TCR [24]. γδ T cells expressing the Vγ9 
chain were common in all tissues, and Vγ9 was most com-
monly paired with Vδ2 (Fig. 2A). However, we also found 

fractions of both Vδ1 and non-Vδ1Vδ2 cells in all tissues 
that expressed the Vγ9 chain (Suppl. Fig. S2). Vγ9−Vδ2+ 
cells were present to some extent in tissue samples and blood 
from most patients (Fig. 2B). We also detected low to mod-
erate expression of CD8 in all subsets of γδ T cells investi-
gated in all the tissues examined (Suppl Fig. S3).

Different naïve and memory populations of γδ T cells 
can be distinguished based on the expression of CD45RA 
and CD27, defining naïve  (CD45RA+CD27+), central 
memory  (TCM,  CD45RA−CD27+), effector memory  (TEM, 
 CD45RA−CD27−), and terminally differentiated effector 
memory  (TEMRA,  CD45RA+CD27−) cells [25]. This clas-
sification was originally devised for conventional αβ T cells 
and may not be directly applicable to γδ T cells, but we have 
used it here for convenience. The Vδ1 cells in the tumours 
and unaffected mucosa were usually dominated by  TEM cells, 
while circulating Vδ1 cells were dominated by naïve and 
 TEMRA cells (Fig. 2C). Vδ2 cells were similar to each other 
in all the examined locations and dominated by cells with 
a  TCM phenotype (Fig. 2D). In the non-Vδ1Vδ2 cells in the 
colon mucosa and the tumours, the naïve cells were more 
prominent than in Vδ1 and Vδ2, and there was also a strong 
component of  TEM cells in the non-Vδ1Vδ2 subset. In addi-
tion, the circulating non-Vδ1Vδ2 cells were dominated by 
 TEMRA cells (Fig. 2E).

Taken together, these results show that γδ T cells do not 
infiltrate colon tumours to the same extent as the surround-
ing unaffected colon mucosa, but that there is a prominent 
subset of non-Vδ1Vδ2 cells primarily made up of Vδ3 cells 
in the tumours.

Infiltration of non‑Vδ1Vδ2 cells in relation 
to clinicopathologic features

As the size of the non-Vδ1Vδ2 subset varied consider-
ably between patients, we were interested to relate their 
presence to clinicopathologic features. However, in this 
relatively small material there was no correlation between 
non-Vδ1Vδ2 cell proportions and MSS/MSI status, tumour 
differentiation, stage, location (right vs left sided), or patient 
age. Only when comparing men and women could we find a 
significantly higher proportion of non-Vδ1Vδ2 cells in the 
tumours from female patients (Fig. 3).

Clonality of tumour‑infiltrating γδ T cells

To determine clonality, and the potential of public, shared 
γδ clonotypes between patients, the δ chain CDR3 sequence 
was analysed. δ chain sequencing of 10 colon tumours 
resulted in a total of 9,403 productive recombinations, rep-
resenting individual cells, where the CDR3 sequence was 
reliably determined, ranging from 175 to 2,167 recombina-
tions from individual tumours. These recombinations were 

Fig. 1  Identification of tumour-infiltrating γδ T cells. Single cell 
suspensions were isolated from tumours, corresponding unaffected 
colon mucosa, and blood, and the frequencies of γδ T cells among 
the  CD3+ T cells were analysed using flow cytometry, immunofluo-
rescence, and CDR3 sequencing. A Gating strategy from a represent-
ative tumour sample. B Frequencies of γδ T cells among all  CD3+ 
lymphocytes determined by flow cytometry. C Density of γδ T cells 
determined by fluorescence microscopy in sections from formalin-
fixed tumours and corresponding unaffected colon mucosa. D Flow 
cytometry staining of Vδ1 and Vδ2 in a representative tumour sample 
of γδ T cells gated as in (a). E–G Usage of the Vδ1 and Vδ2 chains 
by γδ T cells was determined by flow cytometry in cell suspensions 
from unaffected colon mucosa (E), blood (F), and tumour (G). H 
Vδ chain usage was determined by CDR3 sequencing in γδ T cells 
isolated from colon tumours and the percentage of clones using the 
respective Vδ segments or (I) the number of clones using each Vδ 
segment per μg of DNA is shown for each patient. In (I) values less 
than 1 were set at 1 to improve visualization. J Distribution of non-
Vδ1Vδ2 clones in the individual tumours. Symbols represent indi-
vidual values and lines the median. In (C), symbols are connected to 
show corresponding values from the same patients. Data in (B), (E), 
(F), and (G) were analysed using two-tailed Friedman test followed 
Dunn’s post-test and in (C) using two-tailed Wilcoxon test. *p < 0.05 
and ** < 0.01. n = 10 for immunofluorescence and CDR3 sequencing, 
and n = 30 for flow cytometry analyses

◂
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distributed between 2,092 clonotypes, containing between 
1 and 464 recombinations per clonotype. The distribution of 
clonotypes differed markedly between individual tumours 
(Fig. 4A). Of note, the dominating clonotypes were either 
Vδ1, Vδ2, or Vδ3 in different tumours. However, in all but 
one of the patients, Vδ3 cells made up one to five of the 
ten dominating clonotypes (Fig. 4A, B). Unfortunately, we 
did not have access to unaffected tissue and blood from 
these individuals and could thus not investigate to which 
extent these clones were present in healthy tissues. The dif-
ference in γδ T cells between individual tumours was also 
reflected in the Gini-Simpson diversity index, which varied 
between 0.49 and 0.77 in the different tumours. There was 
no difference in diversity between cells from MSI-L/H and 
MSS tumours or between different stage tumours (Fig. 4C). 
Furthermore, there was no overlap between the clonotypes 
found in any patients, further emphasizing the large interin-
dividual variation in γδ T cell composition between patients.

Mass cytometry and mRNA quantification reveal 
diverse clusters of tumour‑infiltrating γδ T cells

To gain additional understanding of the different sub-
sets of γδ T cells beyond δ chain usage, we employed a 
panel of antibodies focused on cytotoxicity and exhaus-
tion markers and analysed ex-vivo isolated T cells using 
mass cytometry. γδ T cells were manually gated as live 
 CD45+CD3+CD4−TCR γδ+ cells, and unsupervised 
dimensional reduction of the aggregated data from all 
patients was performed using the UMAP algorithm, fol-
lowed by clustering using the phenograph algorithm. 
Initially, we clustered 59,110 γδ T cells from tumours, 
38,275 from unaffected colon mucosa, and 204,561 from 
PBMC collected from 18 patients (Fig. 5A). From these 
analyses, it was clear that γδ T cells from blood and the 
colon tissue formed distinct clusters with low or no over-
lap (Fig. 5B). As the tumour-infiltrating lymphocytes pre-
sumably are the most relevant for anti-tumour immunity, 
we subsequently focused on their phenotype and effec-
tor functions. We thus performed unsupervised analysis 
of 59,110 tumour-infiltrating γδ T cells (Fig. 5C). Based 

on the expression of the Vδ1 or Vδ2 chain, 3 distinct 
groups containing Vδ1, Vδ2, and non-Vδ1Vδ2 cells were 
observed (Fig. 5D) In the tumours, we could identify 10 
clusters of Vδ1 cells, 13 clusters of Vδ2 cells, and a single 
cluster of non-Vδ1Vδ2 cells (cluster 15). Expression of 
individual markers across the UMAP projection is shown 
in Suppl. Fig. S4. The contribution of cells from indi-
vidual tumours to a certain cluster differed. Most clusters 
were made up of cells from all the tumours, while some 
clusters (e.g. cluster 18 and 20) consisted mainly of cells 
from a single tumour (Suppl. Fig. S5). While expression 
of several markers could be found in most clusters pre-
sent in the tumours, other markers varied substantially in 
expression. For instance, the Vδ1 cells generally had a 
higher expression of CD103, CD38, and the exhaustion 
markers TIGIT, PD-1 (CD279), and CD39 compared to 
the other subsets. In contrast, the Vδ2 clusters were much 
more diverse with expression of several markers unique to 
only one or two clusters (Fig. 5E). The single non-Vδ1Vδ2 
cluster present in the tumours had a high expression of 
CD45RO and Fas (CD95), and also a higher expression 
than most other clusters of several proteins expressed in 
activated cells, such as ICOS (CD254), OX-40 (CD134), 
CD25, and FoxP3 (Fig. 5E).

In a separate set of four patients, the tumour-infiltrat-
ing Vδ1, Vδ2, and non-Vδ1Vδ2 cells were sorted by 
flow cytometry immediately after isolation, and mRNA 
quantified. In total, we identified 76 genes that were dif-
ferentially expressed between non-Vδ1Vδ2 and Vδ1 or 
Vδ2 cells (Suppl. Table S4). Vδ1 cells presented a signa-
ture consistent with cytotoxic effector functions, with a 
high expression of GNLY (Granulysin), PRF1 (Perforin), 
CD244 (2B4), and NCR1 (NKp46) (Fig. 6A, B). A cyto-
toxic effector signature could also be observed when com-
paring the Vδ2 and the non-Vδ1Vδ2 cells. However, in 
addition to PRF1, the Vδ2 transcriptome was dominated 
by expression of GRZK and GRZB (granzymes K and 
B), the killer cell lectin-like receptors KLRG1, KLRC1 
(NKG2A), and KLRB1 (CD161; Fig. 6A, B). Interest-
ingly, the non-Vδ1Vδ2 cells had a higher expression of 
genes associated with inflammatory and tumour-promoting 
responses, such as CXCL1 (GRO-α), CXCL2 (GRO-β), IL8 
(IL-8), TGFBI (transforming growth factor-beta induced, 
TGFBI), and LGALS3 (Galectin-3), and several genes 
associated with antigen presentation (HLA-DPA1, HLA-
DQA1, HLA-DRB3, and CD74), when compared to the 
other subsets (Fig. 6C).

Taken together, these analyses show that Vδ1 and Vδ2 
cells express markers that are associated with cytotoxic 
effector functions. In contrast, the non-Vδ1Vδ2 cells appear 
to have a more tumour-promoting function, as they express 
less NK cell receptors and cytotoxic effector molecules, but 

Fig. 2  Phenotype of tumour-infiltrating γδ T cells. Single cell suspen-
sions were isolated from tumours, corresponding unaffected colon 
mucosa, and blood, and analysed using flow cytometry. A Vδ2 and 
Vγ9 staining in an unaffected tissue, blood, and tumour from a rep-
resentative patient. B Frequencies of Vγ9− cells among all Vδ2 cells 
from the different tissues. C–E The frequencies of central memory, 
naïve, terminally differentiated effector memory, and effector mem-
ory cells among the Vδ1 (C), Vδ2 (D), and non-Vδ1Vδ2 (E) γδ T 
cells are shown alongside dot plots of Vδ1, Vδ2, and non-Vδ1Vδ2 
cells from tumour tissue. Symbols represent individual values and 
lines and bars the median. n = 4–9

◂
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instead markers associated with an innate inflammatory 
immune response and direct tumour-promoting functions.

Cytokine production in tumour‑infiltrating γδ T cells

To better understand the functional capacity of the non-
Vδ1Vδ2 cell subset in colon cancer patients, we analysed 
the production of Th1 and Th17 associated cytokines and 
GrB following polyclonal stimulation. These experiments 
revealed that IFN-γ was highly expressed especially in Vδ2 
cells from all tissues. In contrast, the non-Vδ1Vδ2 cells from 
the unaffected colon mucosa and the tumours only contained 
moderate frequencies of IFN-γ-producing cells (Fig. 7A). 
TNF production was considerably lower than that of IFN-γ 
and was also lower in the non-Vδ1Vδ2 subset compared to 
the Vδ2 subset in the cells present in both the tissue and 
the circulation (Fig. 7B). In contrast, IL-17A expression 
was only seen in non-Vδ1Vδ2 cells from some individuals, 
but virtually not in any of the other subsets of γδ T cells 
(Fig. 7C). This was similar to IL-8 expression, which was 
only detected in some patients and primarily in circulating 
non-Vδ1Vδ2 cells (Fig. 7D). GrB, on the other hand, was 
expressed at relatively high levels in cells from all tissues 
from all patients. Furthermore, there were no substantial 
differences in GrB production between the γδ T cell subsets 
from the tumours using different TCRs (Fig. 7E). Repre-
sentative flow cytometry plots from one patient can be found 
in Suppl. Fig. S6–S8. The median fluorescence intensity of 

the cells staining positive for the respective cytokines was 
generally similar between the γδ T cells subsets, except for 
GrB staining intensity which was especially high in Vδ1 and 
non-Vδ1 Vδ2 cells from the circulation (Suppl. Fig. S9). In 
general, GrB production from γδ T cells was higher than in 
conventional αβ T cells, while TNF and IL-17 production 
was lower and IFN-γ and IL-8 production was similar to that 
in αβ T cells (Suppl. Fig. S10).

Discussion

Recent studies in CRC show the presence of different sub-
sets of tumour-infiltrating γδ T cells with specific functions, 
which range from tumour-promoting to tumoricidal effects 
[11, 26]. This is likely context dependent and is yet to be 
fully understood. In this study, we used several strategies 
to delineate different subpopulations of tumour-infiltrating 
γδ T cells in colon cancer patients. We show that γδ T cell 
infiltration into tumours was reduced in most patients, com-
pared to the surrounding unaffected colon mucosa, and that 
the tumour-infiltrating γδ T cells vary considerably between 
patients with regard to Vδ chain usage, phenotype, and func-
tional properties.

Most research on human γδ T cells has focused on Vδ1 
and Vδ2 cells, mainly due to the limited availability of anti-
bodies to the other TCRs. However, in human tissues there 
is a considerable proportion of γδ T cells using other Vδ 

Fig. 3  Tumour-infiltrating 
non-Vδ1Vδ2 cells and tumour 
characteristics. Single cell 
suspensions were isolated from 
tumours, and the frequencies of 
non-Vδ1Vδ2 cells among the γδ 
T cells were determined by flow 
cytometry and related to MSI 
status, tumour differentiation, 
stage, and location, and patient 
age and gender. Symbols repre-
sent individual values and lines 
the median. Data were analysed 
using two-tailed Wilcoxon test. 
*p < 0.05. n = 30

MSS MSI-H
0

20

40

60

80

100

%
no

n-
V�

1V
�2

ce
lls

MSI-status

Right Left
0

20

40

60

80

100

%
no

n-
V�

1V
�2

ce
lls

Location

Low High
0

20

40

60

80

100

%
no

n-
V�

1V
�2

ce
lls

Differentiation

>75y <75y
0

20

40

60

80

100

%
no

n-
Vd

1V
�2

ce
lls

Age

I II III
0

20

40

60

80

100

%
no

n-
V�

1V
�2

ce
lls

Stage

Male Female
0

20

40

60

80

100

%
no

n-
V�

1V
�2

ce
lls

Gender



Cancer Immunology, Immunotherapy (2024) 73:174 Page 9 of 16 174

chains, both in tumours and the corresponding healthy tissue 
[5, 11, 26–28]. Here, we could document a similar accumu-
lation of non-Vδ1Vδ2 cells in human colon tissues. In the 

tumours, TCR sequencing showed that these cells expressed 
Vδ3 to a very large extent and also contributed to the most 
expanded clonotypes in most of the patients. The Vδ3 cells 
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Fig. 4  Vδ chain usage in tumour-infiltrating γδ T cells. Single cell 
suspensions were isolated from frozen tumour specimens and the 
CDR3 region analysed with ultra-sensitive sequencing using unique 
molecular identifiers. A The number of clones in the ten most fre-
quent clonotypes from each patient. Colour coding shows the Vδ 
usage in the respective clonotypes. B Chord diagram showing the 

distribution of clones using the different Vδ chains in individual 
patients. C Gini-Simpson index of diversity was calculated for each 
tumour and plotted as a function of microsatellite status and tumour 
stage. Symbols represent individual values and the line the median. 
n = 10
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in the tumours were often oligoclonal with one or a few 
dominating clones, and they may recognize tumour neoan-
tigens or stress signals in the tumour cells, such as Annexin 
A2 [29]. The cognate ligands for Vδ3 cells also include the 
monomorphic MHC I-like molecules CD1d and MR1 [30, 
31]. These molecules are also increased on the cell surface 
following endoplasmatic reticulum (ER) stress and inflam-
matory signals [32, 33], and reactivity against such antigens 
may also explain some of the clonal expansion of Vδ3 cells 
in the tumours.

We have used CD27 and CD45RA as markers of different 
memory populations, even though this nomenclature was 
originally devised for αβ T cells. Vδ1 and non-Vδ1 Vδ2 cells 
from colon, both unaffected and tumour tissue, harboured a 
large proportion of  TEM-like cells which were not present 
among the circulating cells. This is similar to tissue-infiltrat-
ing γδ T cells in liver tissue and non-small cell lung cancer, 
where similar  TEM-like Vδ1 cells have been documented 
[34, 35]. In the Vδ1 and non-Vδ1 Vδ2 cells, the distribution 
between memory subsets was conserved in colon mucosa 
and tumours, but different in blood, while Vδ2 cells were 
similar with regard to memory subsets in blood and tissues. 
Therefore, we cannot rule out the possibility that a substan-
tial proportion of the Vδ2 cells detected in the colon tissues 
may in fact originate from the microvasculature, while Vδ1 
and non-Vδ1 Vδ2 cells might more likely represent tissue-
resident cells, as previously documented in lung and ovarian 
cancer [35, 36].

Both Vδ1 and Vδ2 cells have been attributed potent anti-
tumour effects, while the effect of other γδ T cells in the 
tumour microenvironment is more elusive [37]. Vδ1 cells 
possess potent cytotoxic activity towards cancer cells in vitro 
and a high expression of cytotoxic effector proteins, such 
as Granzyme B [5, 38]. Previous detailed transcriptional 
analyses of tumour-infiltrating γδ T cells revealed distinct 

clusters based on the transcriptional profiles of Vδ1 and Vδ2 
cells that exhibited similar expression of cytotoxic markers 
as the clusters of  CD8+ T cells and NK cells [28]. In our 
study, we identified several clusters of both Vδ1 and Vδ2 
cells with both overlapping and unique features. A distinct 
feature of Vδ1 and Vδ2 cells from both cell surface stain-
ing and mRNA quantification was a strong cytotoxic profile 
comprising both NK cell receptors and cytotoxic effector 
molecules. Still, cytotoxic molecules and NK cell receptors 
were partly differentially expressed, as previously described 
[28, 39]. Using a mass cytometry panel, all non-Vδ1Vδ2 γδ 
T cells formed a single and relatively small cluster. This is 
somewhat different to the flow cytometry results and may 
be explained by the less distinct signals in mass compared to 
flow cytometry. The non-Vδ1Vδ2 cells were characterized 
by a low surface expression of NK cell receptors and also 
appeared to be more activated, while they showed little sign 
of exhaustion. Non-Vδ1Vδ2 cells also had higher mRNA 
expression of neutrophil-recruiting chemokines, a tumour-
promoting factor [7]. Furthermore, one of the genes we iden-
tified as more highly expressed by non-Vδ1Vδ2 cells was 
TGFBI. TGFBI has been implicated in tumour progression, 
and elevated levels have been associated with a poor clinical 
outcome, as it promotes angiogenesis and tumour cell migra-
tion, not least in CRC [40], and also reduces T cell activation 
[41, 42]. The expression of Galectin-3 in non-Vδ1Vδ2 cells 
is also interesting, as recent studies link Galectin-3 produc-
tion to a poor patient outcome in CRC, increased metastatic 
potential, and to a γδ17 phenotype, both in healthy tissues 
and tumours [43, 44]. A cluster of expanded γδ T cells with 
high expression of Galectin-3 and other IL-17 associated 
genes was also recently found in human CRC tumours using 
single-cell RNA sequencing [26].

Functional analyses of the non-Vδ1Vδ2 cells revealed 
that they had a much lower expression of IFN-γ and TNF 
than Vδ2 cells, suggesting a lower capacity to support anti-
tumour immunity. Additionally, non-Vδ1Vδ2 cells were 
the main source of IL-17A among γδ T cells, even though 
the production was limited compared to other cytokines. 
This is consistent with a study by Harman et al. [11], who 
also found IL-17-producing γδ T cells among Vδ3 cells. 
The restriction of IL-17 to non-Vδ1Vδ2 cells is also in 
line with murine studies, where distinct γδ T cell sub-
sets provide IL-17 in the tumour microenvironment [26, 
45]. Generally, intratumoural IL-17 production has been 
associated with a poor prognosis [8, 12], but the source of 
intratumoural IL-17 is not yet fully resolved [27]. Based 
on our current results and previous literature, it is likely 
that a major part of IL-17 produced in the tumour micro-
environment is provided by  CD4+ Th17 cells, rather than 
γδ17 cells [35, 46]. Likewise, TNF production from γδ T 
cells may not be crucial for the overall cytokine balance in 

Fig. 5  Clustering analysis of tumour-infiltrating γδ T cells. Single 
cell suspensions were isolated from tumours, corresponding unaf-
fected colon mucosa, and blood, and analysed using mass cytometry. 
A γδ T cells were first analysed using the UMAP dimensional reduc-
tion algorithm in concatenated data combined from blood, tumour, 
and unaffected tissue. B Data from A are shown individually for 
unaffected tissue, PBMCs, and tumours. C Tumour-infiltrating γδ T 
cells were analysed separately using the UMAP dimensional reduc-
tion algorithm together with the phenograph clustering algorithm. 
The markers indicated in (E) were all used to generate the clustering 
algorithms. D Expression of Vδ1 and Vδ2 overlaid on the clustered 
tumour-infiltrating γδ T cells. The colour scale represents staining 
intensity, and the scale is based on the minimum to the maximum sig-
nal in each specific marker. E Heatmap of marker expression in the 
clusters identified in tumour-infiltrating γδ T cells using the UMAP 
dimensional reduction and phenograph clustering algorithms. The 
colour scale shows the median signal intensity of the respective 
marker in each cluster, and the scales were generated individually for 
each marker and based on the minimum to the maximum signal in 
each specific marker. n = 18

◂
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Fig. 6  mRNA expression in 
tumour-infiltrating γδ T cell 
subsets. Single cell suspensions 
were isolated from tumours and 
Vδ1, Vδ2, and non-Vδ1Vδ2 
cells were sorted by flow 
cytometry and analysed using 
multiplex mRNA quantification. 
To facilitate interpretation of 
the data, the heatmap of dif-
ferentially expressed genes has 
been divided into mRNAs with 
a high (A) and low (B) expres-
sion, respectively. Genes are 
presented in order of the highest 
to the lowest significance values 
of the difference between non-
Vδ1Vδ2 cells and the other 
subsets within the two panels. 
The intensity scales indicate the 
normalized counts of mRNAs 
per cell. Genes marked with * 
indicate significant differences 
between non-Vδ1Vδ2 and 
Vδ1 cells, while no marking 
indicates significant differences 
between non-Vδ1Vδ2 and Vδ2 
cells. C mRNA counts in cell 
subsets from individual tumours 
are shown for CXCL1, CXCL2, 
IL8, TGFBI, LGALS3, and 
HLA-DPA1. Data were analysed 
using two-tailed Friedman test 
without adjustment for mul-
tiple comparisons. *p < 0.05, 
**p < 0.01. n = 4
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colon tumours, while γδ T cells produce IFN-γ to an extent 
comparable to or higher than conventional αβ T cells.

This is a single-centre study with a well-defined patient 
cohort. However, one limitation of the study is the relatively 
small number of patients included, and the varying number 
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Fig. 7  Cytokines and effector proteins in tumour-infiltrating γδ T 
cells. Single cell suspensions were isolated from tumours, corre-
sponding unaffected colon mucosa, and blood, and stimulated with 
PMA and Ionomycin. Vδ1, Vδ2, and non-Vδ1Vδ2 cells were ana-

lysed for the expression of IFN-γ (A), TNF (B), IL-17A (C), IL-8 
(D), and Granzyme B (E) by flow cytometry. Symbols represent indi-
vidual values and the bars the median. n = 5–12
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of patients used for different analyses. The latter was caused 
by several samples containing quite few γδ T cells, and we 
thus had to prioritize between assays. With a larger cohort, 
we might have been able to detect correlations between γδ 
T cell subsets or functions and patient outcome.

In summary, this study demonstrates a large variation 
in γδ T cell composition between individual tumours 
with regard to phenotypic markers, functional potential, 
and TCR usage. Recent studies clearly demonstrate both 
antitumour and tumour-promoting functions of tumour-
infiltrating γδ T cell subsets, which were distinguished 
based on TCR usage [11, 26]. Our results show substantial 
infiltration of non-Vδ1Vδ2 cells, primarily using Vδ3, in 
colon tumours and based on their low expression of cyto-
toxic molecules combined with higher expression of some 
tumour-promoting mediators, we suggest that they con-
tribute mainly to a tumour-promoting immune response.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 024- 03758-7.
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