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Abstract
Circulating tumor DNA (ctDNA) has shown potential as a non-invasive tumor biomarker in neuroblastoma. 
Previous studies used generic assays for detection of selected predefined oncogenic variants as markers of ctDNA, 
which limits the sensitivity and excludes a subset of patients from analysis. Here we assessed patient-specific 
ctDNA analysis for treatment evaluation and detection of relapse in neuroblastoma. We generated personalized 
sequencing panels targeting 10 tumor-specific single nucleotide variants (SNVs) for each patient and performed 
ctDNA analysis of 136 plasma samples collected longitudinally in 13 children with neuroblastoma. ctDNA was 
detected using ultra-deep next generation sequencing with unique molecular identifiers to eliminate polymerase-
induced errors. We found that the levels of ctDNA at diagnosis correlated with risk group and decreased gradually 
during effective treatment. All samples collected during follow-up in patients without disease relapse were 
ctDNA-negative. All four relapses were associated with elevated ctDNA levels, and a majority of the analyzed 
SNVs were detected at time of relapse. In one case, ctDNA became positive 78 days before the relapse was 
diagnosed with routine assessment and increased by over a thousandfold before the start of additional treatment. 
Overall, ctDNA was more uniformly elevated at diagnosis, showed less putative false positive results, and was 
more sensitive for detection of relapse compared to five serum or urine tumor markers used in clinical routine. In 
conclusion, personalized ctDNA analysis is suitable for clinical monitoring of tumor burden and may be used in all 
neuroblastoma patients regardless of risk group or tumor genetics.
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Fig. 1 (See legend on next page.)
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To the editor
Neuroblastoma originates from the developing sym-

pathetic nervous system and has variable prognosis 
depending on stage, tumor genetics and age at diagno-
sis [1]. The disease is mainly monitored with radiologic 
examinations and 123I-metaiodobenzylguanidine scintig-
raphy [2], which expose the patients to anesthetics and/
or ionizing radiation and may be inconclusive in patients 
with low disease burden [3, 4]. Previous studies have 
evaluated ctDNA as a non-invasive biomarker in neuro-
blastoma by analyzing selected genetic alterations such 
as MYCN amplification or ALK mutations, which is only 
applicable in patients harboring those variants [5–8]. 
Others have used large generic next-generation sequenc-
ing panels, limiting the accuracy of the analysis at low 
levels of ctDNA [9–11].

We designed personalized ctDNA panels for detec-
tion of 10 SNVs per patient selected based on variant 
allele frequency (VAF) in whole genome sequencing of 
tumor and leukocyte DNA in 13 children with neuroblas-
toma (Fig. S1 and Supplementary information: Materials 
and Methods). We included 74 coding and 55 non-cod-
ing SNVs in the sequencing panels (Fig. S2). Six of the 
patients (46%) did not harbor MYCN or ALK aberra-
tions and would therefore have been excluded from pre-
vious ctDNA studies focusing on those variants (Table 
S1). Cell-free DNA (cfDNA) from 136 plasma samples 
was analyzed with the personalized sequencing panels 
using Simple multiplexed PCR-based barcoding of DNA 
for ultrasensitive mutation detection by next-generation 
sequencing (SiMSen-Seq) (Supplementary data 1–3) 
[12]. During SiMSen-Seq, a unique molecular identi-
fier (UMI) sequence is added to each DNA molecule. 
After PCR amplification and sequencing, we generated 
error-corrected consensus reads requiring a UMI fam-
ily size of three or more. A consensus read positive for 
a tumor-specific SNV was considered a mutated tumor 
molecule (MTM), and the level of ctDNA was defined as 
the total number of MTM per milliliter of plasma for all 

10 assays combined. The median sequencing depth was 
42,180 reads (Fig.  1A), and the median total number of 
consensus reads was 21,642 per plasma sample (Fig. 1B). 
The SNVs had similar VAF in cfDNA at diagnosis as in 
tumor DNA, and the VAF in cell-free and tumor DNA 
correlated with each other both for coding and non-cod-
ing SNVs (Fig. 1C–E). High-risk (HR) patients presented 
with higher levels of cfDNA and ctDNA at time of diag-
nosis compared to non-HR patients (Fig. 1F).

Longitudinal analysis of HR neuroblastoma patients 
showed a stepwise decline of ctDNA during induction 
chemotherapy, which was more profound compared to 
the reduction in tumor volume (Fig.  1G, Fig. S3). The 
levels of ctDNA decreased gradually during treatment 
also in the non-HR patients (Fig. 1H). Patient C132 had a 
ganglioneuroblastoma, which is a mixed tumor type with 
features of both neuroblastoma and the benign counter-
part ganglioneuroma. The tumor regressed spontane-
ously before the start of treatment, showed a marginal 
response to chemotherapy, and did not relapse during 
four years of follow-up. In line with a less malignant dis-
ease, ctDNA was undetectable at diagnosis, alternated 
between low and negative levels during neoadjuvant 
treatment, and was negative during follow-up in this 
patient.

In the nine patients who were alive without relapse 
at the latest follow-up, all 23 samples collected during 
maintenance therapy or after the end of treatment were 
ctDNA-negative. Five of these patients had remaining 
tumors visible on radiologic examinations after treat-
ment, suggesting that ctDNA is undetectable in patients 
with non-malignant tumor rests (Table S2).

Serum NSE and chromogranin A, and urine dopamine, 
HVA and VMA were analyzed longitudinally as clinical 
routine. At diagnosis, these tumor markers were similar 
in HR and non-HR patients (Fig. S4) and varied between 
normal levels and up to ∼100 times the upper refer-
ence limit (URL). In contrast, all patients except one had 
ctDNA levels between 104 and 106 times URL, which was 

(See figure on previous page.)
Fig. 1  Personalized ctDNA analysis for monitoring tumor burden in neuroblastoma. (A) Sequencing depth. Each datapoint represents the mean se-
quencing depth for one plasma sample. Median, 42,180. (B) Number of consensus reads in all 10 assays combined per plasma sample. Median, 21,642. 
(C) Variant allele frequency in whole genome sequencing of tumor biopsy DNA versus SiMSen-seq of cfDNA at time of diagnosis. Median 40.9 vs. 42.3%. 
P = 0.06, Wilcoxon matched-pairs signed rank test. (D) Variant allele frequency in whole genome sequencing of tumor biopsy DNA versus SiMSen-seq of 
cfDNA at time of diagnosis for coding and non-coding SNVs, respectively. Median 35.6 vs. 44.0% (P = 0.16) for coding SNVs; 45.0 vs. 46.0% (P = 0.051) for 
non-coding SNVs. P value, Wilcoxon matched-pairs signed rank test. (E) Correlation between variant allele frequency in cfDNA at diagnosis and tumor 
biopsy DNA for coding and non-coding SNVs. P < 0.0001 for both coding and non-coding SNVs, non-parametric Spearman correlation test. Patients C035 
and C125 were excluded from the analysis since no pre-treatment cfDNA sample was available from these patients. Patient C132 was excluded from the 
analysis since ctDNA was under the limit of detection at diagnosis. (F) Levels of cfDNA and ctDNA at time of diagnosis in children with HR and non–HR 
neuroblastoma. P-value (A and B) = 0.009, Two-tailed Mann Whitney test. MTM, mutated tumor molecules. (G) Total levels of ctDNA throughout treatment 
in patients with HR neuroblastoma. CTx, chemotherapy; HD-ASCT, high dose chemotherapy with autologous stem cell transplantation. ND, not detected. 
The asterisk denotes disease relapse. (H) Levels of ctDNA, clinical tumor markers, and approximated tumor volume over time in patients with low- or 
intermediate-risk neuroblastoma. For patient C109, approximated tumor volume was based on CT in the first two timepoints and MRI in the last three 
timepoints. For patient C221, approximated tumor volume was based on CT in timepoint two and six, and MRI in all other timepoints. For patient C132, 
approximated tumor volume was based on CT in the first three timepoints and MRI in last three timepoints. CE, carboplatin-etoposide; VA, vincristine-
actinomycin D; CADO, cyclophosphamide-vincristine-doxorubicin; Chr. A, chromogranin A; ND, not detected
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Fig. 2  Levels of ctDNA compared to conventional tumor markers for evaluation of treatment response and detection of relapse. (A) Levels of ctDNA and 
clinical tumor markers at time of diagnosis. All values were normalized to upper reference limit, which for ctDNA was set to 1 MTM/ml. Chr. A, chromo-
granin A. (B) Levels of ctDNA, clinical tumor markers, and approximated tumor volume over time in patients C035 and C160. For patient C035, approxi-
mated tumor volume was based on CT in the first timepoint and MRI in all other timepoints. For patient C160, approximated tumor volume was based 
on CT in the first five timepoints and MRI in the last three timepoints. CTx, chemotherapy; HD-ASCT, high dose chemotherapy with autologous stem cell 
transplantation; MTM, mutated tumor molecules; ND, not detected. (C). Levels of ctDNA, clinical tumor markers, and approximated tumor volume over 
time in patients C189 and C125. For patient C189, approximated tumor volume was based on ultrasound in timepoint two, MRI in timepoint nine and 
ten, and CT in all other timepoints. For patient C125, approximated tumor volume was based on CT in all timepoints. CTx, chemotherapy; HD-ASCT, high 
dose chemotherapy with autologous stem cell transplantation; doxo, doxorubicine; VCR, vincristine; Chr. A, chromogranin A. URL, upper reference limit; 
ND, not detected
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set to 1 MTM/ml (Fig.  2A). ctDNA correlated with the 
clinical course of disease in all patients (Fig. S5–S10 and 
Supplementary information: Clinical case summaries) 
and was informative also in those with inconclusive clini-
cal biomarkers, such as C035 and C160 (Fig. 2B).

Two patients experienced a total of four relapses dur-
ing the study (Fig.  2C). Patient C189 had a HR neuro-
blastoma harboring ALK p.F1174L. During maintenance 
therapy, the patient had a metastatic relapse which was 
treated with the ALK inhibitor lorlatinib. Two more 
relapses occurred during lorlatinib and after additional 
chemotherapy. All three relapses were associated with 
elevated levels of ctDNA. At the second relapse, six 
consecutive samples had gradually increased levels of 
ctDNA starting 78 days before the metastasis was dis-
covered whereas the clinical biomarkers remained unaf-
fected. When relapse treatment was started, the level of 
ctDNA had increased approximately 1,500 times since 
the first positive sample. Most of the SNVs analyzed 
were detected at all three relapses (Fig. S11A). Patient 
C125 had metastasized neuroblastoma positive for ALK 
p.R1275Q and was enrolled in the study at time of a met-
astatic relapse. The patient then received lorlatinib, which 
resulted in complete response and a stepwise reduction 
of ctDNA which became consistently negative after 84 
days of treatment. The sequencing panel for patient C125 
was based on the initial diagnostic biopsy collected two 
years prior to enrollment in the study. At time of relapse, 
9 of 10 SNVs were detected in the cfDNA (Fig. S11B).

Taken together, our results suggest that personalized 
ctDNA analysis provide a clinically useful biomarker in 
children with neuroblastoma regardless of risk group 
and tumor genetics (Supplementary information: Dis-
cussion, limitations and future directions). As large-
scale sequencing of tumor DNA becomes increasingly 
available, this method could be of value also in other 
malignancies.
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