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A B S T R A C T   

Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The 
presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection 
of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several 
scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode 
for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The 
barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR- 
based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based intro
duction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR 
protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of- 
concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, 
machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR 
multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA 
as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contri
butions of 10 pg to 150 pg and ratios of 1–15% relative to the major donor, 99.2% of the expected alleles were 
detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially 
lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental 
allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime 
scene samples including complex mixtures.   
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1. Introduction 

Massively parallel sequencing (MPS) has revolutionized molecular 
biology and genomics. Numerous applications of MPS have been pre
sented in forensic genetics, including single nucleotide polymorphism 
(SNP) analysis for appearance and ancestry prediction, kinship analysis 
and investigative genetic genealogy, as well as short tandem repeat 
(STR) DNA profiling [1–6]. Choosing MPS over the present 
state-of-the-art methodology of capillary electrophoresis enables the 
generation of larger multiplex assays and, in the case of STR markers, 
improves allele resolution through the addition of sequence informa
tion. The latter feature is especially valuable in the analysis of complex 
mixtures, i.e., crime scene traces containing DNA from two or more in
dividuals [7,8]. 

One challenge with sequencing is to distinguish true alleles from 
noise [7,9,10]. In theory, MPS enables the analysis of individual tem
plate molecules. In practice, the detection of rare DNA variants is limited 
by artefacts from library preparation or from the sequencing itself [11, 
12]. Generally, these erroneous sequences make it difficult to confi
dently detect variants that constitute less than 1% of the template 
molecules for a specific marker [13,14]. STR markers have even higher 
error rates due to stutter artefacts formed by polymerase slippage. The 
most common type of stutter is n-1, i.e., molecules that have lost one 
repeat unit compared to the true allele [15–17]. Polymerase slippage 
can also lead to the introduction of a repeat unit (n+1 stutter) and 
multiple stuttering events may occur, leading to stutters such as n-2 and 
n-3 [18,19]. 

The systematic nature and high incidence of STR stutter artefacts 
hinder the full exploitation of the power of MPS for the analysis of 
challenging casework samples. A commercial STR sequencing system 
has been shown to enable the detection of the minor contributor at 5% of 
the total amount of DNA in two-person mixtures [20,21]. However, 
minor alleles in n-1 stutter positions of the major donor will be filtered at 
substantially higher rates, preventing detection of any masked true al
leles. Taking alleles in stutter positions into account, a state-of-the-art 
forensic STR kit enabled the complete detection of minor contribu
tions in 1:3 mixtures, whereas one-third to two-thirds of the markers 
were called in 1:19 mixtures [22]. Being able to analyze and interpret 
even smaller contributions in mixed stains would be highly beneficial, as 
a substantial part of biological traces in severe crimes are mixtures 
[23–26]. 

Aside from stutter, sequencing of STRs is affected by single base er
rors [27]. Such errors can originate either during PCR-based library 
preparation [28], or through a read error in the process of sequencing 
[29]. A PCR error is more problematic, since a substitution (or error in 
general) will proliferate through the following cycles, so that a repli
cation mistake occurring in an early cycle in a single molecule can make 
up a substantial portion of the final reads for a locus. An error during the 
sequencing process, on the other hand, will only result in a single 
incorrect read. In addition to stutter and single base errors, artefacts 
such as PCR hybrids and insertions and deletions of other sizes than an 
STR repeat unit also exist at lower levels [10]. 

A solution that aims to reduce sequencing noise, and thus enable the 
detection of low-abundance alleles, is the application of unique molec
ular identifiers (UMIs) [30–34]. UMIs are random oligonucleotide 
stretches of 8–18 bases. The UMIs are attached to the target DNA early in 
library preparation, making it possible to group all reads stemming from 
a specific template molecule post-sequencing [33]. The labelling is done 
either through enzymatic digestion and ligation or via a PCR step where 
the UMI is included in one of the primers [35–37]. Generally, all reads 
carrying the same UMI sequence are grouped into a UMI family from 
which a consensus read aiming to represent the true allele is generated. 
Theoretically, most of the errors introduced in PCR or sequencing will 
thus be removed. 

UMI barcoding is very effective in reducing random errors, and has 
greatly improved the possibility of detecting rare sequence variants in 

medical applications [34]. During the last decade, UMIs have been 
applied for prenatal testing, cancer diagnostics and quantitative RNA 
sequencing [33,35,38]. Recently, UMIs have found their way into 
forensic genetics through the application of QIAGEN fragmentation and 
ligation methodology for sequencing of SNP [39] and STR markers [40, 
41], respectively. However, the 10 ng recommended DNA input for the 
QIAGEN library preparation kit is often unavailable in forensic appli
cations, although the methodology has been evaluated with lower DNA 
amounts [39,41]. 

PCR-based introduction of UMIs provides low limits of detection 
[35], but also comes with its own complexity: the random bases of the 
UMI may bind nonspecifically to the DNA template, leading to loss of 
primers and the risk of forming unspecific PCR products. One technol
ogy developed to handle this issue, originally intended for cancer di
agnostics, is SiMSen-Seq [42]. SiMSen-Seq (Simple, multiplexed, 
PCR-based barcoding of DNA for sensitive mutation detection using 
sequencing) includes protection of the UMI in a hairpin to avoid inter
action with the template during primer annealing and has been shown to 
enable the detection of rare SNP variants related to tumors down to 0.1% 
in liquid biopsies [42,43]. The use of low primer concentrations (≈ 40 
nmol/L), increased PCR extension times (≈ 6 minutes), low amounts of 
DNA polymerase (≈ 0.1X) and low numbers of PCR cycles (≈ 3 cycles) in 
the first of two PCR steps are other key features of SiMSen-Seq library 
preparation [42–45]. 

Here, the SiMSen-Seq method is applied to develop a proof-of- 
concept seven STR marker multiplex for MPS library preparation and 
an associated bioinformatics pipeline. The overall aim is to determine 
the potential of UMIs and SiMSen-Seq to improve the performance of 
MPS-STR in general, with a particular focus on the detection of minor 
contributors in mixed crime scene traces. To this end, the assay and 
pipeline are used to analyze and categorize the types of errors that occur 
in PCR and sequencing of STR markers. Initially this is done without 
applying any allele calling thresholds or stutter filters. The impact of 
UMIs on error reduction is investigated, studying both the systematic 
stutter artefacts and random single base errors. Two methods for gen
eration of consensus reads are compared with respect to the quality of 
the results: a naïve approach using the most common sequence and 
multiple sequence alignment. Additionally, machine learning (ML) 
models are trained to distinguish between correct and erroneous 
consensus reads based on UMI family information. Finally, the perfor
mance of the SiMSen-Seq STR multiplex is evaluated for analysis of 
mock casework samples including low-template samples and complex 
mixtures containing DNA of up to five persons. To the best of our 
knowledge, this is the first application of PCR-based UMI labelling in 
forensic genetics and STR profiling. 

2. Materials and methods 

The seven STR multiplex assay developed in this study is based on 
the previously described SiMSen-Seq methodology [43]. The method 
includes a barcoding PCR followed by adaptor PCR (Fig. 1A). One of the 
primers in each pair includes a stretch of 12 random nucleotides 
constituting the UMI or barcode. The UMI is protected during the bar
coding PCR by a stem-loop structure preventing base pairing below the 
hairpin melting temperature of 74 ◦C. In the barcoding PCR, a combi
nation of low concentrations of primers, low amounts of DNA poly
merase, low numbers of PCR cycles, and increased extension times 
contribute to keeping errors as low as possible while tagging the copies 
of each original template molecule with UMIs. This enables, through 
bioinformatic analysis, tracking of each individual template molecule 
while also correcting for errors that occur both in the PCR-based library 
preparation and sequencing (Fig. 1B). All reads carrying the same UMI 
sequence are grouped into one UMI family, which is used to generate 
one consensus read. 
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2.1. DNA samples 

In this study, reference DNA samples, single-source DNA samples, 
and DNA mixtures were used. The DNA material used as a positive 
control was 2800 M Control DNA (Cat. nr. DD7101, 10 ng/µL, Promega, 
Madison, WI, USA), hereafter referred to as 2800 M. 2800 M is a single- 
source male human genomic DNA commonly used as a control in STR 

analysis. NIST Standard Reference Material (SRM) 2391d components A, 
B and C [46] as well as 44 well-characterized NIST samples from 
different individuals with published or known STR profiles were used in 
this study [4,47]. The latter samples were quantified using an in-house 
digital PCR assay and subsequently diluted to 0.5 ng/µL prior to anal
ysis. The twelve included DNA mixtures are made up of the same con
tributors and ratios as twelve of the mixtures in the Forensic DNA Open 

Fig. 1. Schematic illustration of (A) the barcoding and adaptor PCR and (B) the bioinformatic pipeline.  
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Dataset [47]. The mixture proportions of the samples used are presented 
in Table 1. All work presented has been reviewed and approved by the 
NIST Human Research Protections Office (MML-16–0080). 

Low-template DNA input was also investigated, applying two dilu
tion series from two of the single-source samples above to give DNA 
inputs of 2 ng, 1 ng, 500 pg, 250 pg, 125 pg and 62.5 pg (each amount 
analyzed in duplicate). 

2.2. SiMSen-Seq primers for STR markers 

The development of the seven multiplex STR assay was performed as 
described in the SiMSen-Seq protocol [43]. The seven STR markers were 
chosen based on analytical performance and the added value of 
increased allelic information due to sequence variants as reported in the 
literature [4,48]. The primer sequences were obtained from published 
studies through STRbase [49,50] and are listed in Supplementary 
Table S1. 

The primer pairs in the seven STR multiplex assay target the 
following STR loci, ordered from the smallest amplicons to the largest: 
D2S441 [51], D1S1656 [52], D3S1358 [53], vWA [53], D8S1179 [53], 
D21S11 [53] and D12S391 [52]. The complete amplicon sizes and read 
lengths for these markers are described in Supplementary Table S1. The 
theoretical maximum read lengths (excluding 28 bp for the UMI and 
hairpin) for analysis of 2800 M DNA are 100 bp for D2S441, 137 bp for 
D1S1656, 139 bp for D3S1358, 159 bp for vWA, 232 bp for D8S1179, 
233 bp for D21S11 and 241 bp for D12S391. 

The primers are rather long (up to 96 bp), since, in addition to the 
target-specific sequences, the UMI and hairpin are included in one 
primer and the adapter-specific sequence in the other, as described in 
the SiMSen-Seq protocol [43]. The UMI and hairpin sequence was added 
to the sequence upstream (D2S441, D8S1179, D12S391, D21S11) or 
downstream (D1S1656, D3S1358, vWA) of the repeat region to optimize 
the performance of each primer pair. Primers for the barcoding PCR 
were ordered from Integrated DNA Technologies (IDT, Coralville, IA, 
USA) as DNA Ultramer oligomers with standard desalting to achieve the 
best possible oligonucleotide quality [54]. Primers for the adaptor PCR 
were also ordered from IDT but as DNA oligomers with HPLC 
purification. 

2.3. Library preparation 

The first step in SiMSen-Seq library preparation is barcoding PCR 
where the following reagents and concentrations were used in a total 
reaction volume of 10 µL: 1X SuperFi buffer (Thermo Fisher Scientific, 
Waltham, MA, USA), 2.5 mmol/L MgCl2 (Roche, Basel, Schweiz), 
0.5 mol/L L-carnitine inner salt (Sigma-Aldrich, Burlington, MA, USA), 
0.2 mmol/L dNTPs (Roche), 40 nmol/L to 100 nmol/L of each barcode 
primer (IDT), 0.05 µL (0.25X) Platinum SuperFi II DNA polymerase 
(Thermo Fisher Scientific). One ng of template DNA was added to each 
reaction unless otherwise noted. Cycling was performed on a ProFlex 

PCR System (Thermo Fisher Scientific) using the following settings: 98 
◦C for 3 min, 4 cycles of [98 ◦C for 10 s, 59 ◦C for 6 min and 72 ◦C for 
30 s], 72 ◦C for 30 s and hold at 4 ◦C. 

The second step in library preparation is adaptor PCR. The reaction 
mix was prepared accordingly, with a total reaction volume of 25 µL: 1X 
SuperFi buffer (Thermo Fisher Scientific), 2.5 mmol/L MgCl2 (Roche), 
0.5 mol/L L-carnitine inner salt (Sigma-Aldrich), 0.2 mmol/L dNTPs 
(Roche), 0.4 µmol/L of each primer (IDT), 0.5 µL (1X) Platinum SuperFi 
II DNA polymerase (Thermo Fisher Scientific). Additionally, 8 µL of the 
barcoding PCR reaction mixture was added as template. Cycling was 
performed on a ProFlex PCR System (Thermo Fisher Scientific) using the 
following settings: 98 ◦C for 2 min, 30 cycles of [98 ◦C for 10 s, 80 ◦C for 
1 s, 72 ◦C for 30 s, 76 ◦C for 30 s] and hold at 4 ◦C. The ramp rate during 
cycling was set to 0.4 ◦C/s. 

After the adaptor PCR, purification of the products was performed 
with AMPure XP Beads (Beckman Coulter, Brea, CA, USA) at a 0.8X ratio 
vol/vol. Before adding the beads (28 µL), the reaction volume was 
adjusted to 35 µL by the addition of 10 µL nuclease-free water to the 
adaptor PCR reaction mixture. The protocol from the manufacturer was 
used, and the final products were eluted in 20 µL Low EDTA TE, pH 8.0 
(Quality Biological, Gaithersburg, MD, USA). 

The purified libraries were analyzed with the TapeStation 4150 
(Agilent, Santa Clara, CA, USA) and High Sensitivity D1000 Reagents 
(Product nr. 5067–5584–5587, Agilent) as a quality control before 
sequencing. 

The DNA concentration of each library was determined using the 
Qubit dsDNA HS Assay Kit (Product nr. Q32851, Thermo Fisher Scien
tific). Thereafter, all samples were equimolarly normalized and diluted 
to 4 nmol/L in one pool. For the negative controls, the average con
centration of the samples was applied in normalization. The pooled li
braries were further diluted to 8 pmol/L with ~ 10% PhiX (Illumina, San 
Diego, CA, USA) spike-in. Sequencing was performed on a MiSeq FGx 
(Verogen, San Diego, CA, USA) using the MiSeq Reagent Kit v3, 600 
cycles (Illumina) in 2×300 cycles paired-end read mode. 

2.4. Bioinformatic processing and data analysis 

The UMIec Forensics bioinformatic pipeline was developed to 
determine STR genotypes from barcoded sequencing reads (available 
under MIT license at https://github.com/agynna/UMIec_forensics). The 
pipeline builds on the UMIErrorCorrect pipeline for deduplicating bar
coded sequencing reads and the FDStools suite for typing STR markers 
[10,55]. The pipeline uses FLASH to combine paired end-reads [56], 
which are assigned to a STR marker by FDStools TSSV, and sorted into 
UMI families by UMIErrorCorrect. By default, one mismatch is allowed 
in the UMI sequence. 

A schematic illustration of the bioinformatic analysis outlines the 
main steps (Fig. 1B). Briefly, the forward and reverse FASTQ files from 
the MiSeq FGx instrument contain sequences with the sample-specific 
index denoted in the sample sheet. The first step in the analysis is to 
remove adapter ends using AdapterRemoval [57] and thereafter to 
combine the read pairs using a modified version of FLASH [56]. Next, 
the UMI and spacer sequences are trimmed from each read by creating a 
new FASTQ file with the UMI-information in the header. Here, UMIs 
within a Hamming distance ≤ 1 are clustered according to the “direc
tional” method [58], to allow for sequencing errors in the UMI. Since 
STR markers are highly repetitive and generally do not work well with 
standard aligners [59–61], TSSV was used [10,61] to sort the sequences 
in a FASTQ file for each of the seven included STR markers. Thereafter, a 
conversion from FASTQ to BAM using the samtools fastq command was 
included to fit the input requirement in the next pipeline step, UMIEr
rorCorrect [55]. UMIErrorCorrect analyzes all sequences containing the 
same UMI and creates one consensus read per UMI. Consensus reads 
were generated by either taking the most common sequence with each 
UMI or performing a multiple sequence alignment using mafft [62]. For 
both of these, the consensus read generation required at least 50% 

Table 1 
Description of the analyzed DNA mixtures. The mixtures have been prepared and 
described in detail previously [47].  

Number of contributors Ratio (%) DNA amounts (pg) 

3 P 3/3/94 30/30/940 
3 P 3/3/94 120/120/3760 
3 P 5/47/48 50/470/480 
3 P 10/45/45 100/450/450 
4 P 5/5/5/85 50/50/50/850 
4 P 10/10/10/70 100/100/100/700 
4 P 1/5/47/47 10/50/470/470 
4 P 10/10/40/40 100/100/400/400 
5 P 5/5/5/5/80 50/50/50/50/800 
5 P 15/15/15/15/40 150/150/150/150/400 
5 P 10/10/10/35/35 100/100/100/350/350 
5 P 5/5/30/30/30 50/50/300/300/300  
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identity at each base and only UMI families with at least three reads 
were accepted. During explorative investigation and when the subse
quent ML filter was used, a minimum of two reads per UMI family were 
required to accept a consensus read. As a last step in the analysis, 
FDSTools v. 2.0 [10] was used to determine the STR alleles in each 
sample using the UMI consensus reads. In parallel, each sample was also 
analyzed with FDSTools ignoring the UMI information for a comparison 
between using and not using the UMIs. 

During data processing, rather than reporting the obtained sequence 
strings, the module STRnaming (part of FDSTools) was used to shorten 
the strings into interpretable brackets [63]. Here, each sequence variant 
is labelled according to the corresponding fragment size obtained in 
standard STR capillary electrophoresis analysis (e.g., CE13), followed by 
the DNA sequence repeat structure in brackets. 

The data was summarized at different levels to determine the added 
value of utilizing UMIs. Raw reads are the total number of reads in the 
FASTQ file. The term “read” is used for reads mapped to STRs and the 
term “consensus read” is used for data that has been constructed from 
the UMI families. 

The n-1 stutter ratios were calculated by dividing the number of 
reads/consensus reads for the stutter artefact by the number of reads/ 
consensus reads for the parental allele. Heterozygote balance was 
calculated by dividing the number of reads/consensus reads for the 
allele with the lower read number by that for the allele with the higher 
read number. 

Data analysis and plotting was done in Python using the packages 
pandas (v 2.0.2), scipy (v. 1.8.1), matplotlib (v. 3.7.1) and seaborn (v. 
0.12.2). 

200 randomly selected UMI families with incorrect consensus reads 
were inspected to investigate why and which types of errors still persist 
after UMI correction. The families were classified according to the type 
of error. 

Machine learning (ML) was explored to filter out unreliable UMI 
families. For this purpose, the single-source data was divided into 
training and test sets with 39 and 10 profiles, respectively. The Python 
packages scikit-learn (v. 1.1.1) and imbalanced-learn (v 0.9.1) were used 
for machine learning [64]. 

Thirteen features based on the family members and the consensus 
read were calculated for each UMI family and used as model input 
(Supplementary Table S2). Features related to sequence, size or allele 
number were excluded to decrease the risk of biasing the model towards 
specific alleles present in the training set. Three learning algorithms 
were evaluated: support vector machine (SVM), random forest (RF) and 
small fully connected neural networks (NN, in scikit-learn also known as 
multi-layer perceptron, MLP) [65–67]. The models were trained to 
predict whether a consensus read was correct, i.e. identical to the known 
allele sequence, or not. 

The SVM model used the SVC classifier in scikit-learn. The numeric 
features were transformed by Yeo-Johnson transformation. Hyper
parameters were decided by stepwise grid searches and five-fold cross 
validation. Separate models were trained for each marker. The final 
models used equal sampling from correct and incorrect UMI families, 
radial basis function kernel with kernel coefficient (gamma) 100, reg
ularization (C) 0.05, and equal class weights. 

The RF model used RandomForestClassifier in scikit-learn. Hyper
parameters were decided by stepwise random searches and five-fold 
cross validation. Separate models were trained for each marker. The 
final models used equal sampling from correct and incorrect UMI fam
ilies, 70 estimators, maximum depth of 8, maximum 3 features per split 
and minimum 1 sample per leaf. Isotonic probability calibration was 
performed per marker by CalibratedClassifierCV. 

The NN model used MLPClassifier in scikit-learn. The numeric features 
were transformed by Yeo-Johnson transformation. Hyperparameters 
were decided by random search and five-fold cross validation. The final 
model used a 1:8 sampling ratio of incorrect to correct UMI families, two 
layers with 10 and 5 ReLU nodes, respectively, and L2 regularization 

(alpha) 0.005. Isotonic probability calibration was performed by 
CalibratedClassifierCV. 

After cross validation and hyperparameter selection, the whole 
training set was used to train the final models which were evaluated on 
the test set. 

The NN algorithm was found to have the best performance, closely 
followed by RF, with the SVM being considerably worse when compared 
by metrics suitable for imbalanced classification problems (Supple
mentary Figure S1 A-C). 

Initially, no allele calling thresholds or stutter filters were applied to 
enable the study of PCR and sequencing artefacts and the impact of UMIs 
and ML filter on a fundamental level. Then, the effect of varying the 
allele calling threshold on the detection of true alleles and artefacts was 
investigated. 

3. Results 

Four sequencing runs were performed in this study, each run 
including 25 samples and a negative control. The quantity and quality of 
all libraries was verified before sequencing using fluorometry and 
fragment analysis (Supplementary Table S3). The sequencing quality 
metrics were within the expected ranges (Supplementary Table S4). The 
number of raw reads and reads mapped to STR markers per sample were 
consistent between the four sequencing runs (Supplementary Table S5- 
S6, Supplementary Figure S2). Excluding negative controls, the overall 
mean number of reads per STR marker was 95 039 (SD = 43 613). 
Taking the UMI information into account, the mean number of 
consensus reads per STR marker was 1 143 (SD = 676) (Supplementary 
Figure S3). All 47 analyzed single-source samples, as well as 2800 M 
DNA, showed full allele fragment size and sequence concordance with 
published or verified values for all seven STR markers. For all analyzed 
samples and markers, the alleles with the highest read number/ 
consensus read number supported the correct genotype (Supplementary 
Figure S4, S5). 

The negative controls consistently yielded below 250 000 raw reads 
and a maximum of 2% of the raw reads were mapped to STR markers. On 
average, 18 (SD = 9) reads were mapped to each STR locus, the majority 
of which were not recognized as alleles. With UMIs, the negative con
trols did not result in any consensus reads for any of the markers due to 
the low numbers of obtained reads. 

3.1. Generation of consensus reads from UMI families 

Two methods for generation of consensus reads from each UMI 
family were compared to recover the original template sequences as 
faithfully as possible: (1) the naïve approach of taking the most common 
sequence among the members of each family and (2) performing a 
multiple sequence alignment of all family members. When applied to 47 
single-source samples, the alignment method produced overall 1.6% 
more correct consensus reads compared to the “most common” method 
while being far more computationally expensive. Simultaneously, 18% 
more incorrect consensus reads were obtained, leading to an increased 
proportion of errors. Accordingly, the “most common” method was used 
in the remainder of the study, resulting in between 0.4% and 4.2% 
incorrect consensus reads, depending on STR marker (Fig. 2A). 

A subset of the UMI families was manually inspected to improve the 
understanding of the consensus read generation. Most UMI families 
(more than 95% of the obtained consensus reads for each marker) 
supported the correct allele. These families typically consisted of a 
majority of reads supporting the correct sequence and an ensemble of 
less common variants attributed to stutter artefacts and single base er
rors (Fig. 2B). It is evident that a main benefit of using UMIs is that these 
errors are corrected by the consensus read generation. 

However, about 2.3% of the UMI families still yielded consensus 
reads not matching the known alleles. An erroneous consensus read can 
be caused by either an error in the barcoding PCR or in an early cycle of 
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the adaptor PCR. In the former case, the correct template sequence is 
expected to be absent in the erroneous family. In the latter case, the 
template sequence should be present at a level close to the most common 
incorrect sequence, as long as the family is well sampled. Accordingly, 
when families with incorrect consensus reads were inspected, both 
families containing the correct sequence (but overwhelmed by incorrect 
reads) and families without the correct sequence were found (Fig. 2C). 
The dominant type of consensus read error was n-1 stutters (Fig. 2D). 
Most of these stutters occurred in the Longest Uninterrupted Stretch 
(LUS), but about one in ten were found in shorter repeat stretches 
(Fig. 2E). Single base errors, as well as n+1, n-2 and “zero” stutter (i.e., 
the simultaneous loss and gain of repeats in different repeat stretches), 
were also observed (Fig. 2F). 

For the dataset with 47 single-source samples, a majority of the UMI 
families had less than 30 member reads. However, there was a sub
stantial long tail of large families with over 100 members (Fig. 2G). As 
could be intuitively expected, families with fewer members (below ten) 
were found to have less reliable consensus reads (Fig. 2G). About three- 
quarters of the families contained reads which were different from the 
consensus read, i.e., had a purity of less than one (inset of Fig. 2H). Those 
where all reads were identical were predominantly families with five or 
fewer members, which may have been insufficiently sampled to discover 
any deviant members. In the families with a consensus read identical to 
the correct allele, it typically made up most of the member reads 
(Fig. 2H, Supplementary Figure S6). 

3.2. Error reduction with UMIs 

The effect on error reduction by using UMIs was initially investigated 
without using any acceptance thresholds or stutter filters. Without 
applying the UMIs, between 75% (D12S391) and 95% (D2S441) of the 
total number of sequencing reads supported the correct genotypes for 

the 47 single-source samples. Application of the UMIs led to a signifi
cantly lowered incidence of errors (P < 0.001, two-tailed paired t-test), 
as 95% (D12S391) to 99% (D2S441) of the total number of consensus 
reads coincided with the correct genotypes. 

Both with and without UMIs, n-1 stutters in the LUS were the most 
abundant type of artefact. Before applying the UMI information, the 
average ratio of n-1 stutters (relative to parental allele) ranged from 
1.6% (SD = 1.1%) for D2S441 to 18% (SD = 6.0%) for D12S391 
(Fig. 3A, Supplementary Table S7). Focusing on the most heavily 
affected marker, D12S391, the n-1 stutter ratio ranged from 3.0% to 
31% for the 82 observations. Using the UMI families to generate 
consensus reads led to drastic reductions in the n-1 stutter ratios. 
D2S441 and D12S391 still showed the lowest and highest incidence of n- 
1 stutters, respectively, at 0.3% (SD = 0.3%) and 4.6% (SD = 2.1%) of 
the parental allele (Fig. 3A). For D12S391, the lowest stutter ratio 
recorded was 0.4% and the highest was 9.6%. Overall, the seven STR 
markers showed four to six times lower stutter ratios when using the 
UMIs. 

Other than the n-1 stutters, the artefacts included other stutters, 
single base errors and combinations thereof. Prior to applying the UMIs 
and without using any acceptance thresholds, each marker showed a 
multitude of different errors. For example, for 2800 M at 1 ng input and 
the marker D12S391, there were 3 820 different artefacts of which 2 693 
were represented by single reads and 179 had above ten reads. The most 
common artefacts other than n-1 stutters were n-2 and n+1 stutter in 
LUS or in other repeat segments. The stutter ratios were between 0.5% 
and 3% of the parental allele read number. Applying UMIs, the number 
of detected artefacts dropped to twelve of which five were single 
consensus reads. The remaining n-2 and n+1 stutters were all below 
0.3% of the parental allele. For D1S1656 in the same 2800 M sample, 
there were 1 121 different artefacts of which 677 were singletons and 35 
had more than ten reads. The ratios for stutters other than n-1 were 

Fig. 2. Generation of consensus reads from UMI families. A. Proportion of incorrect consensus reads per marker using either “most common” or “multiple sequence 
alignment” (Alignment) consensus methods. B-C. Examples of UMI families with sequences and numbers of reads. Sequences are given in STRnaming format. These 
families gave (B) correct and (C) incorrect consensus reads, with the correct sequence underlined (green) and the proposed cause of error indicated in blue (stutters) 
and red (single base errors). The most common, i.e., selected, consensus read is indicated by a triangle. D. Type of errors among 200 randomly selected UMI families 
with incorrect consensus reads. E. Whether n-1 stutter in D occurred in the longest uninterrupted repeat sequence (LUS), or other repeat sequence, summarized for 
markers D8S1179, D12S391 and D21S11. F. Other types of stutter in D, summarized for all markers. G. Number of members in UMI families and whether they 
supported the correct (blue) or incorrect (red) allele, respectively. The rightmost bar includes families with at least 140 family members. H. Proportion of family 
members identical to the consensus read (purity) with correct (blue) and incorrect (red) allele, respectively. Inset shows proportion where all members are identical 
to consensus, main plot shows families with any deviant members. The peaks at 0.5, 0.66 and 0.75 are caused by families with 2, 3 and 4 members. See Supple
mentary Fig. S6 for marker-wise plots of G-H. 
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Fig. 3. Error reduction by using UMI families to generate consensus reads. A. Ratio of n-1 stutters (relative to parental allele) without UMI information (green) and 
after using the UMIs to generate consensus reads (orange) for single-source samples. The boxplots show median values, the first and third quartiles and the whiskers 
1.5 interquartile ranges, dots represent outliers (n=48 samples, number of stutters between 69 and 82). B. Distribution of read counts (or consensus read counts) for 
correct alleles (orange) and artefacts (blue) for single-source samples, determined without using the UMI information (top), with UMI consensus reads (middle) and 
with UMIs and ML filtration (bottom) (top, middle n=48, bottom n=10 samples). See Supplementary Fig. S9 for all markers. C. Number of artefacts per sample 
depending on method and allele calling threshold, expressed as a proportion of total reads for marker. No stutter filter was applied (blue, orange n=48, green n=10 
samples). D. Tradeoff between error rate and number of consensus reads when applying ML filter. Proportion of accepted UMI families (left hand y scale) and 
proportion of incorrect consensus reads (right hand y scale) depending on chosen acceptance threshold according to the NN model, summarized for all markers. See 
Supplementary Fig. S1D-E for marker-separate plots (n=10 samples). E. Proportion of incorrect consensus reads with UMI correction or with UMIs and ML model, 
with thresholds set for each marker to accept half the number of families as the fixed thresholds. The boxplots show median values, the first and third quartiles and 
the whiskers 1.5 interquartile ranges, dots represent outliers (n=10 samples). 
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0.1–2.4% of the parental allele and below 1% of the total number of 
reads for the marker. Using UMIs reduced the number of artefacts to 
seven of which two were single consensus reads. The two remaining 
stutters had two to three consensus reads each, corresponding to less 
than 0.3% of the parental allele. Similar results were obtained for all 
markers and samples. Without using the UMIs, D12S391 and D21S11 
showed the highest numbers of artefacts (about 3 500–5 000, Supple
mentary Figure S7A) while the other markers had around 1 000 artefacts 
each. With UMIs, the number of artefacts was reduced to five to fifteen 
(Supplementary Figure S7B). 

Heterozygote balance, i.e., the ratio between the read numbers of the 
two alleles of a heterozygous genotype, was significantly improved by 
applying UMIs (P < 0.001, two-tailed paired t-test). The improvement 
was most notable for the markers with the largest amplicon sizes 
(D8S1179: 0.89 vs 0.83, D12S391: 0.86 vs 0.80 and D21S11: 0.90 vs 
0.86, see Supplementary Figure S8A, Supplementary Table S8). 

In MPS analysis, acceptance thresholds are commonly used to 
determine if a detected sequence variant should be called or rejected. 
Allele calling thresholds are often set as a minimum number of reads and 
a proportion of the total number of reads of a marker. Here, usage of 
UMIs clearly improved the separation between the number of 
(consensus) reads observed for correct sequence variants and artefacts, 
respectively (Fig. 3B and Supplementary Figure S9). For example, for 
D12S391 the correct allele with the fewest reads had only 1.1 times 
more reads compared to the most abundant artefact without using UMIs 
(20 095 reads versus 18 316 reads). With UMIs this margin improved to 
a 4.7-fold difference (343 versus 73). Similar results were obtained for 
D1S1656; without using the UMIs the least observed correct sequence 
variant had two times as many reads as the most abundant artefact (14 
432 versus 7 328). Applying UMIs elevated the margin to 7-fold (277 
versus 41). This improved separation enables the use of robust allele 
calling thresholds that minimize both false positives and false negatives. 

The effect of various allele calling thresholds set as proportions of the 
total number of reads of a marker is shown in Fig. 3C. Without UMIs, 
setting the acceptance threshold to 13% was necessary to remove all 
artefacts. Using the UMIs to form consensus reads, a threshold of 4.5% 
had the same effect. Without UMIs, a 4.5% allele calling threshold would 
result in an average of five artefacts per sample. Note that no stutter 
filters were applied in this example. 

3.3. Applying machine learning to improve UMI error reduction 

Using UMIs to generate consensus reads resulted in a substantial 
decrease in errors. It was hypothesized that additional information 
present in the UMI families, but currently not used for consensus read 
generation, could be utilized to further improve error reduction. Ma
chine learning (ML) was thus applied on UMI family features to deter
mine whether the families giving erroneous consensus reads could be 
excluded as unreliable. A neural network was trained to assign each 
family a classification score, with a higher score indicating that the 
consensus read is more likely to be correct (see Methods). Families with 
scores below a set ML score threshold are then discarded. The user can 
adjust the ML score threshold to achieve the desired balance between 
fidelity and the number of consensus reads (i.e., proportion of accepted 
families) (Fig. 3D, Supplementary Figure 1D-E). Since the included 
markers have different consensus read error levels, separate ML score 
thresholds may be set for each marker. Here, ML score thresholds that 
reduce the number of consensus reads for each marker to approximately 
half compared to the UMI correction without ML filtration (i.e., with 
fixed thresholds on purity and number of members) were applied for 
demonstration purposes. When applied to the 10 samples in the test set, 
this setting was found to decrease the proportion of incorrect consensus 
reads for all markers without losing any allele information (Fig. 3E). 
Other ML score thresholds may be applied. The effect of using ML score 
thresholds that yield similar numbers of reads as the fixed three mem
ber/50% purity thresholds is shown in the Supplementary Tables as “ML 

low thresholds”. As with applying UMIs in the first place, the markers 
with the highest error rates benefited the most from the ML filter; the 
largest improvement was observed for D12S391 with a reduced error 
rate from 5.2% (SD = 1.8%) with UMIs to 2.2% (SD = 0.9%) with UMIs 
and ML filter. 

The ML filter gave a further decrease of the n-1 stutter ratios by a 
factor of two (Supplementary Figure S10), and improved the separation 
between true alleles and artefacts (Fig. 3B), enabling the use of even 
lower allele calling thresholds (Fig. 3C). For example, the calling 
threshold of 4.5% with UMIs could be lowered to about 2.5% with UMIs 
and ML filter while still eliminating all artefacts. 

3.4. Analysis of low-template samples 

All expected alleles were detected with full concordance to known 
allele values for all DNA amounts from 62.5 pg to 2 ng. Below 500 pg 
the amplicon quantity decreased, as seen in the fluorometric quantifi
cation and library quality control (Supplementary Table S3). The li
braries were pooled equimolarly to compensate for any differences. 
However, for the lowest amount tested (62.5 pg DNA), most of the se
quences still did not map to any of the STR markers. For 62.5 pg DNA, 
14–22% of the total number of raw reads mapped to STR markers, as 
compared to 48–70% for 1 ng DNA (Supplementary Table S5 and Sup
plementary Figure S2). 

The number of consensus reads per marker increased linearly with 
the DNA input from 62.5 pg to 1 ng (Fig. 4A, slope and r2 per marker 
D2S441: 0.43, 0.983; D1S1656: 0.56, 0.988; D3S1358: 0.56, 0.986; 
vWA: 0.46, 0.994; D8S1179: 0.33, 0.980; D12S391: 0.62, 0.996; 
D21S11: 0.66, 0.998). The heterozygote balance decreased with lowered 
DNA input, as expected due to sampling effects and stochastic amplifi
cation, regardless of if the UMIs were used or not (Supplementary 
Figure S8B). 

Without UMIs, the rate of erroneous reads was constant at around 
16% (SD = 0.8%) over a 32-fold range of DNA input levels. Using UMIs 
with ML filter, the error rate was more than tenfold lower at 1.3% (SD =
0.4%) and stable between the dilutions, indicating that the UMI meth
odology is applicable for a wide range of template concentrations 
(Fig. 4B). Notably, the rate of acceptance of UMI families by the ML filter 
was stable from 62.5 pg to 1 ng, despite the model only being trained on 
1 ng. Generation of consensus reads led to a large reduction or errors for 
samples with 250 pg DNA or less (Fig. 4C). For example, applying an 
allele calling threshold of 1% gave on average 15 artefacts per sample 
when studying sequencing reads, five artefacts when using the UMIs and 
three with UMIs and the ML filter. 

3.5. Analysis of DNA mixtures 

Almost all expected alleles were detected (994 of 1 002 possible 
correct alleles, 99.2%) when analyzing 12 three- to five-person mixtures 
with minor contributions of 10 pg to 150 pg DNA and ratios of 1–15% 
relative to the major donor, and applying UMIs and ML filter. In total, 
eight drop-out alleles were observed, distributed over four samples. 
Setting an allele calling threshold as a percentage of total reads for a 
locus is a compromise between the risk of false negatives (drop-outs) and 
false positive sequence variants (e.g., stutter artefacts). The results for all 
the analyzed mixtures were combined and compared in terms of the 
relation between drop-outs and artefacts per sample when applying 
different allele calling thresholds (Fig. 5A). For example, when setting 
the threshold to 0.7% almost all expected alleles were detected. Without 
UMIs, there were on average 17 artefacts per sample, whereas using 
UMIs gave 4.4 and UMIs and ML filter 2.3. Using a threshold of 2.1% 
resulted in 12% drop-out alleles both with and without using the UMIs, 
whereas the number of artefacts was six-fold lower with UMIs. Applying 
the ML filter further improved the outcome, as an acceptance threshold 
of 2.1% showed a reduction from 1 to 0.6 artefacts per sample. 

As an example, the obtained sequence variants and corresponding 
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numbers of sequencing reads (without using the UMIs) or consensus 
reads (with UMIs) are displayed for one of the most complex mixtures 
(markers D12S391 and D21S11, Fig. 5B-E). The sample is a 4-person 
mixture with one minor contributor constituting 1% (10 pg) of the 
DNA and with another minor at 5% (50 pg). Without UMIs, the D12S391 
alleles for the two major contributors (P3 and P4) obtained high 
numbers of reads (above 15 000 per allele) and could easily be called 

(Fig. 5B). However, the alleles for the two minor contributors (P1 and 
P2) may be difficult to call since at least three artefacts (corresponding 
to stutter artefacts of P3 and P4) show higher numbers of reads than the 
correct alleles. Stutter filters could be introduced, but this also comes 
with the risk of filtering true alleles. Similar results were obtained for 
D21S11, where the number of reads of the stutters were comparable to 
those of the minor contributor alleles (Fig. 5D). Applying the UMIs, the 

Fig. 4. Effect of UMIs on low-template DNA analysis. A. Number of consensus reads per marker obtained with UMI + ML filter. Error bar indicates SD. B. Proportion 
of reads for incorrect alleles without UMI correction (left) and with UMIs and ML filter (right). Dots represent each data point. C. Number of artefacts per sample with 
250 pg or less template, for each allele calling threshold expressed as proportion of total reads for each marker. No stutter filter was applied. A-C: n=4 samples at each 
concentration. 
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number of artefacts were substantially fewer, and the stutter ratios were 
lower, making the evaluation of the minor contributor profiles more 
straightforward (Fig. 5C and E). 

4. Discussion 

The application of MPS in forensic STR analysis is increasingly 
researched and several assays have been presented [68–70]. A challenge 
in MPS-STR analysis is to distinguish the true alleles from artefacts such 
as stutter and single base errors. Here, applying UMIs and the 
SiMSen-Seq method made it possible to discern minute contributions in 
complex mixtures. Almost all expected alleles (99.2%) were detected in 

mixtures with minor contributions of 10 pg to 150 pg DNA and ratios of 
1–15% relative to the major donor with substantially lowered rates of 
artefacts. In other studies, using MPS without UMIs, about 10–80% of 
the minor contributor alleles were detected in mixtures where the minor 
constituted 5% of the total DNA amount [5,8,22,69]. 

In a previous study applying UMIs for STR analysis with a ligation- 
based method, it was demonstrated that UMIs led to improved allele 
assessment, but the limit of detection hindered some of the potential 
[41]. Here, analyzing low-template samples, 62.5 pg of DNA input gave 
complete STR profiles. Thus, the limit of detection when applying UMIs 
and SiMSen-Seq is comparable with other MPS-STR assays, which 
typically detect all expected alleles for 62.5 pg [22,69] or 250 pg [68, 

Fig. 5. Effect of UMIs on DNA mixtures. A. Average number of artefacts and drop-outs for the twelve mixtures (analyzed in duplicate) depending on method and 
allele calling threshold expressed as the proportion of total reads for each marker. The allele calling threshold was varied between 0.7% and 2.9% and is indicated 
above the data points. No stutter filter was applied. B. Alleles obtained for D12S391 without UMIs for a 4-person mixture with ratios of P4 at 47% (470 pg), P3 at 47% 
(470 pg), P2 at 5% (50 pg) and P1 at 1% (10 pg). Alleles with at least 10 reads and 1.2% of the highest allele are displayed. Blue indicates alleles for P3 and P4, green 
indicates alleles for P1 and P2 and red indicates artefacts. C. Same as B, but with UMIs and ML filter applied, and with a threshold of at least 2 consensus reads. D. 
Same as in B, but for the locus D21S11. E. Same as D, but with UMIs and ML filter applied, and with a threshold of at least 2 consensus reads. 
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71] depending on filtering strategies. 
Studying all generated data, without applying any thresholds or 

stutter filters, when examining the effect of UMIs on sequencing quality 
enabled a deeper understanding of the impact of UMIs and SiMSen-Seq. 
Primarily, many artefacts showed substantially lower relative incidence 
and thousands of incorrect singletons were discarded. This provides the 
opportunity to use lower acceptance thresholds in casework. Others 
have demonstrated that filters and thresholds are among the most 
important factors for success when interpreting MPS-STR mixtures [7, 
10,22,72], highlighting that the key challenge is to distinguish the true 
signal from noise [7]. Here, using the UMIs to generate consensus reads 
made it possible to apply acceptance thresholds of 0.5% of the total read 
number per locus with a low level of protruding errors. Note that this is 
without applying any stutter filters. Using such a low analytical 
threshold without applying the UMIs resulted in on average more than 
25 artefacts per sample, which would be unacceptable when analyzing 
unknown traces. With UMIs, the number of artefacts dropped to nine per 
sample. Thus, the various thresholds and filters that are commonly 
applied to MPS-STR data [7,9,22] may be substantially lowered when 
using UMIs and SiMSen-Seq. The main artefact that remains after UMI 
correction is n-1 stutter. Applying a low, marker-specific stutter filter in 
combination with a threshold of 0.5% of the total read number per locus 
should lead to complete removal of stutters and single base errors while 
providing sensitive detection of the STR alleles. 

One major benefit of applying UMIs and SiMSen-Seq was the great 
reduction of stutter artefacts, which were generally below 5% of the 
parental allele. Thus, stutter ratios were substantially lower than those 
found in current state-of-the-art capillary electrophoresis kits (Supple
mentary Figure S11) and in other MPS-STR studies [1,5,19,71]. In the 
latter, the stutter ratios were similar to the levels found here prior to 
applying the UMI information. The common strategy to handle stutters 
is to apply filters, but there are also more sophisticated solutions such as 
using models to distinguish noise from true alleles [19,73,74]. A few 
attempts have been made to reduce the incidence of stutters through 
biochemical modifications of PCR, such as the use of additives, lowered 
annealing temperatures, and application of alternative DNA poly
merases [75]. Regarding the DNA polymerase, it has been suggested that 
the presence of a DNA binding domain or high-fidelity properties may 
reduce the incidence of stutters [16,76]. The DNA polymerase applied 
here, Platinum SuperFi II, has previously been found to result in lower 
stutter ratios compared to five other thermostable polymerases [77]. 
Optimized reaction conditions may be combined with UMIs to further 
reduce the occurrence of stutters. Through stutter reduction, it is shown 
that UMIs and SiMSen-Seq are powerful tools for minimizing systematic 
errors occurring in PCR-based library preparation. Most previous studies 
applying UMIs have been focused on random sequencing errors such as 
single base substitutions [33,34]. 

Using UMIs and SiMSen-Seq lead to a substantial reduction in 
sequencing errors which enables enhanced interpretation possibilities 
for complex mixtures. However, some artefacts persisted after consensus 
read generation (between 1% and 5% depending on STR marker). Since 
many of the incorrect families had similar properties, the application of 
an ML model on top of the UMI generation may further decrease the 
level of errors, as seen in previous work [40,41]. Here, the error 
reduction by ML filtration was most effective on the systematic errors 
created by stuttering. The ML filter worked well over a large range of 
DNA amounts and for complex mixtures. The filtration level may be 
chosen by the user to tune the desired balance between number of 
consensus reads and fidelity. In a practical application, different settings 
may be used for different STR markers (e.g., D2S441 may not need 
filtration at all, while D12S391 requires stringent settings). This may be 
incorporated into the design of the PCR reaction. For example, tuning 
the primer concentrations so that better performing markers yield fewer 
pre-ML consensus reads while those with many errors produce larger 
numbers of consensus reads. The consensus reads may then be filtered 
until all markers are balanced both in terms of read counts and error 

levels. 
Two sufficiently advanced ML model architectures (RF and differ

ently sized NN models) performed similarly and had similar perfor
mance on the training and test data sets, respectively (data not shown). 
This suggests that adding more training data would bring little benefit 
and that the models are complex enough to capture the relationship, but 
it could still be beneficial to use more information from each family. 
Some consensus read generation errors appear inevitable, e.g., when an 
error occurred in the barcoding PCR and all family members are iden
tical but wrong. However, including more measures describing the 
families, i.e., model input features, may improve the discrimination 
further in other cases. Alternatively, entirely different model designs 
could be used to avoid the information bottleneck represented by a 
limited number of numeric features. A model that takes the family 
members and their sequences directly as input would be exposed to all 
information present in the UMI family and would be able to make the 
most informed decision. Here, the filter is used with a threshold to either 
discard of accept each family. It is also possible to forward the score to a 
specialized allele calling method to use as a measure of reliability for 
each consensus read as has been demonstrated previously [41]. 

Another alternative is a STR-aware algorithm that generates a reli
able consensus read (or discards unreliable UMI families) directly from 
the members. Taking sequencing quality information into account may 
specifically improve the quality of consensus reads from families with 
very few members, where sequencing errors have a larger impact. Such 
an algorithm could be either heuristic or based on first principles, and 
could possibly generate a larger number of reliable consensus sequences 
than the naïve “most common” method plus a post-hoc filter as in this 
work. We are, however, not aware of any suitable model algorithms 
available at the time of writing. Further, both when giving a filtering 
model access to all information contained in the families or if using a ML 
model to generate consensus reads directly, great care should be taken to 
prevent that the models become biased to the alleles present in the 
training data. 

5. Conclusions 

UMIs and SiMSen-Seq are promising tools for improved forensic STR 
profiling. The proof-of-concept seven STR multiplex yielded concordant 
alleles for 47 single-source samples at 1 ng as well as for low-template 
samples at 62.5 pg (the lowest amount tested). Minor contributions at 
10 pg or 1% of the total DNA amount were detected in complex mix
tures. The main impact of UMIs and SiMSen-Seq was a reduction of er
rors, seen as lowered numbers of artefacts and greatly reduced stutter 
ratios. Thus, the UMIs removed both random and systematic errors. 
Application of an ML model on the UMI families led to a decrease in 
erroneous consensus reads. Overall, the SiMSen-Seq method provided 
for better separation between true alleles and artefacts, which makes it 
possible to apply substantially lower allele calling thresholds and stutter 
filters compared to regular MPS analysis. Lowered thresholds and filters, 
in turn, may lead to improved detection of minute DNA amounts. As 
UMIs are relatively cheap and straightforward to incorporate into 
existing sequencing methods there is great potential for wide application 
within forensic STR sequencing, allowing better interpretation of, for 
example, complex mixtures. 

CRediT authorship contribution statement 

Joakim Håkansson: Writing – review & editing, Resources, Project 
administration, Funding acquisition. Becky Steffen: Writing – review & 
editing, Investigation. Yalda Bogestal: Writing – review & editing, 
Resources, Project administration, Funding acquisition. Tobias 
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2021–00059. Anders Ståhlberg was funded by Region Västra Götaland; 
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