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Digital RNA sequencing using unique
molecular identifiers enables
ultrasensitive RNAmutation analysis
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Tobias Österlund 1,2,4 & Anders Ståhlberg 1,2,4

Mutation analysis is typically performed at the DNA level since most technical approaches are
developed for DNA analysis. However, some applications, like transcriptional mutagenesis, RNA
editing and gene expression analysis, require RNA analysis. Here, we combine reverse transcription
and digital DNA sequencing to enable low error digital RNA sequencing. We evaluate yield,
reproducibility, dynamic range and error correction rate for seven different reverse transcription
conditions using multiplexed assays. The yield, reproducibility and error rate vary substantially
between the specific conditions, where the yield differs 9.9-fold between the best and worst
performing condition. Next, we show that error rates similar to DNA sequencing can be achieved for
RNA using appropriate reverse transcription conditions, enabling detection of mutant allele
frequencies <0.1%atRNA level.We also detectmutations at bothDNAandRNA levels in tumor tissue
using a breast cancer panel. Finally, we demonstrate that digital RNA sequencing can be applied to
liquid biopsies, analyzing cell-free gene transcripts. In conclusion, we demonstrate that digital RNA
sequencing is suitable for ultrasensitive RNA mutation analysis, enabling several basic research and
clinical applications.

The ability to analyze gene expression by sensitive and specific methods,
such as quantitative PCR, digital PCR, microarrays and massive parallel
sequencing, is fundamental in basic research as well as in clinical applica-
tions. Today, individual genes are typically assessed by PCR-based
approaches, while transcriptomes are analyzed by sequencing. To enable
RNA analysis, RNA needs to be reverse transcribed into complementary
DNA (cDNA). Reverse transcription (RT) is a reproducible reaction for a
given sequence, but the reaction efficiency is highly variable between dif-
ferent genes and sequences1,2. The RT efficiency also depends on the choice
of reverse transcriptase, reaction conditions and priming strategy2–7. Several
applications require the ability to detect low variant allele frequencies at
RNA level. For instance, when the amount of sample is small it may be
beneficial to perform mutation analysis at RNA level, since the number of
transcripts is higher than the number of genomic DNAmolecules for most
expressed genes. Furthermore, combinedDNAand RNA analysis may also
provide superior sensitivity to detect mutations in blood plasma8. There are

also emerging applications that require analysis at RNA level. For example,
errors that occur during cellular transcription, i.e., transcriptional muta-
genesis, may be both biologically and clinically relevant, where variations in
RNA sequences even at low frequencies may impact cellular functions and
phenotypes9–11. Another area is the analysis of RNA modifications12. Post
transcriptional RNA editing of adenosine to inosine by the ADAR protein
family is a common RNA modification that is associated with diseases,
including several tumor entities12,13.

To improve the accuracy of sequencing, unique molecular identifiers
(UMIs) can be attached to the cDNA molecules during or after RT14. The
UMI usually consists of a random 6–16 nucleotide long sequence. Bioin-
formatically, reads with the same UMI are collapsed to a single consensus
read, reducing quantification biases that arise when the same cDNA
molecule is sequenced multiple times15. Polymerase-induced errors also
accumulate during library construction and cluster generation during
sequencing, limiting the ability to detect variant allele frequencies below
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1–5%16–18. Uniquemolecular identifiers can also be utilized to overcome this
issue for RNA analysis, but this concept is poorly studied. To enable cor-
rection of polymerase-induced errors, each initial molecule needs to be
sequenced multiple times19,20. When trying to detect very low variant allele
frequencies this means that large numbers of cDNA molecules need to
be sequenced, i.e., deep sequencing. For example, detection of 0.1% variant
allele frequency means that on average, sequence reads from 1000 unique
cDNAmolecules need to be observed withmultiple reads per UMI in order
to detect one true variant cDNAmolecule. Thus, several thousand reads are
required per target cDNA sequence. Hence, polymerase-induced error
correction with UMIs is suited predominantly for targeted sequencing. For
DNA analysis, several UMI-based strategies have been developed for tar-
geted sequencing, such as SiMSen-Seq21, CAPP-Seq22, Duplex-Seq23 and
RareSeq24. However, the adaption and use of UMI-based targeted sequen-
cing approaches for error-free cDNA sequencing is not developed. The
properties of RT in digital RNA sequencing and mutation analysis are also
mainly unknown.

Here, we report a digital RNA sequencing approach based on UMIs,
originating from the SiMSen-Seq technology. We evaluated the properties
of seven different RT approaches, determining cDNA yield, reproducibility
and error rates.We also studied the dynamic range analyzing different RNA
concentrations and the ability to detect mutations for one well-performing

RT condition. For comparison, we analyzed identical sequences at both the
DNA and RNA level. Next, we demonstrated the use of digital RNA
sequencing to assess circulating mRNA extracted from blood plasma. The
development of digital RNA sequencing enables several basic research and
clinical applications that require accurate quantification and low error RNA
sequencing.

Results
Experimental design to analyze RNA and reverse transcription
properties using digital sequencing
Figure 1 shows the experimental workflows for digital RNA and DNA
sequencingusing SiMSen-Seq. For digital RNAsequencing,RNAfirst needs
to be reverse transcribed into cDNA. SiMSen-Seq consists of two rounds of
PCR. In the first barcoding PCR, target cDNA molecules are tagged with
UMIs. In the second adapter PCR, sequencing adapters are attached to all
targeted DNA. Libraries are finally purified and sequenced. This approach
enables digital sequencing, correcting for both polymerase-induced errors
and quantification biases25 (Supplementary Fig. 1). The difference when
analyzing cDNA compared with genomic DNA is that single-stranded
cDNA generates three UMIs per original cDNA molecule, while double-
stranded DNA produces six UMIs per molecule (Fig. 1). A schematic
overview of UMI generation during barcoding PCR is shown in
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Fig. 1 | Schematic overview of SiMSen-Seq. The SiMSen-Seq workflow for RNA
and DNA analysis, respectively. Complementary DNA is single-stranded, while
genomic DNA is double-stranded, resulting in three and six different UMIs,

respectively. One-third of the reaction volume of barcoding PCR is loaded into the
adapter PCR. The tested RT conditions are shown.
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Supplementary Fig. 2. After barcoding PCR, each original cDNA and
genomic DNA molecule generates about one and two reads with specific
UMIs into the adapter PCR, respectively, due to the three-fold dilution step
between the two PCR reactions. We required at least three raw reads per
UMI to generate consensus reads. An overview of the bioinformatics
pipeline is shown in Supplementary Fig. 3.

We analyzed the performance of seven different RT conditions by
analyzing five different sequence regions in the tumor protein p53 (TP53)
gene (Supplementary Fig. 4). Total RNA was extracted from the myxoid
liposarcomacell lineMLS1765–92,where the samebatchofRNAwasused
for all experiments that were compared. Reverse transcription was per-
formed according to the manufacturers’ instructions and Table 1. The
seven RT conditions used different reverse transcriptase, reagents com-
position including their concentrations. The same assays were also used to
analyze genomic DNA extracted from theMLS 1765–92 cells as reference.
Figure 2 shows typical sequencing data before and after error correction
using UMIs when analyzing RNA with two different RT conditions,
Transcriptor or Omniscript, as well as genomic DNA. The error at each
nucleotide position was defined as the number of non-reference reads
divided by the total number of detected reads. The error rate was reported
as themean across all analyzed nucleotide positions per assay or panel. The
observed error rates are the sum of all errors that accumulate during the
entire analysis, which also includes biological variations amongmolecules.
The error rate of the RT step can only be indirectly assessed by comparing
data between the RT conditions with genomic DNA that does not require
any RT step.

Complementary DNA yield is reverse transcription-dependent
To study the RT properties we evaluated cDNA yield, reproducibility and
error rate in each of the seven different RT conditions. Figure 3a shows the
relative cDNA yields for all RT conditions. Transcriptor generated the

highest cDNA yield followed by Primescript II and Omniscript, while
Superscript IV produced the lowest cDNA yield. The mean difference in
cDNA yields between Transcriptor and Superscript IVwas 9.9-fold and the
trend was similar for all five individual TP53 assays (Fig. 3b). We also
analyzed 40 ng genomic DNA as reference, which corresponds to ~11,200
molecules26 that is equivalent to 22,400 consensus reads.Wedetected 54%of
all loaded genomic DNAmolecules after sequencing and data analysis.

Next, we compared the experimental RT reproducibility followed by
SiMSen-Seq comparing the variability as coefficient of variation between
technical replicates using genomicDNAas control (Fig. 3c). The coefficients
of variation ranged from 2.0% forGoscript to 69.9% for Superscript IVwith
a mean of 26.7% across all seven RT conditions, while we observed a
coefficient of variation of 6.2% for genomic DNA analysis. The reprodu-
cibility was expected to be inferior for RNA analysis since the additional RT
step is known to increase experimental variability2,27. Based on cDNA yield
and reproducibility data we selected Omniscript as the optimal RT condi-
tion for downstream experiments.

To assess the dynamic range of digital RNA sequencing with Omnis-
cript in the RT step we performed dilution series using 140–8.75 ng total
RNA (Fig. 3d). We observed a linear correlation between observed cDNA
molecules and loadedamount ofRNAmolecules for allfiveTP53 assays. For
all assays we observed a saturation effect in RT yields for the highest loaded
RNA concentration, i.e., fewer molecules were detected than expected.

To determine the variability between genes and different amounts of
total RNA,we designed a hotspotmutation panelwith eight assays targeting
commonly mutated nucleotide position in BRAF, EGFR, FLT3, KRAS,
MEK1, NOTCH1 and NRAS. Figure 3e shows the number of consensus
reads using Omniscript and three different amounts of total RNA ranging
from1 ng–200 ng.EGFR,KRAS,MEK1 andNRASwere highly expressed in
MLS 1765–92 cells, while BRAF and NOTCH1 were intermediately
expressed and FLT3 was lowly expressed.

Table 1 | Reverse transcription conditions

Name (Company) Reverse transcriptase
origina

RNase
activity

Priming strategya Reaction
volume (µL)

Reagentsa Temperature profileb

Transcriptor (Roche) Recombinant enzyme in E.
coli (10 U)

RNaseH+ Oligo-dT (2.5 µM)
Rand hex (2.5 µM)

20 RT buffer (1x)
MgCl2 (8 mM)
dNTPs mix (1 mM)
RNase inhibitor (20 U)

65 °C inc. (10min)
25 °C (5min)
55 °C (30min)
85 °C (5min)
hold at 4 °C

Superscript IV (Thermo-
Fisher Scientific)

MMLV (200 U) RNaseH+ Oligo-dT (2.5 µM)
Rand hex (2.5 µM)

20 RT buffer (1x)
dNTPs mix (0.5 mM)
DTT (5 nM)
RNaseOUT (40 U)

65 °C inc. (5 min)
23 °C (10min)
50 °C (10min)
80 °C (10min)
hold at 4 °C

Sensiscript (Qiagen) Recombinant enzyme in E.
coli (20U)

RNaseH + Oligo-dT (1 µM)
Rand hex (1 µM)

10 RT buffer (1x)
dNTPs mix (0.5 mM)
RNaseOUT (20 U)

37 °C (60min)
hold at 4 °C

PrimeScript II (Takara) MMLV (200 U) n.p. Oligo-dT (2.5 µM)
Rand hex (2.5 µM)

20 RT buffer (1x)
dNTPs mix (0.5 mM)
RNase inhibitor (40 U)

65 °C inc. (5 min)
30 °C (10min)
42 °C (45min)
95 °C (5min)
hold at 4 °C

Omniscript (Qiagen) Recombinant enzyme in E.
coli (20 U)

RNaseH + Oligo-dT (1 µM)
Rand hex (1 µM)

10 RT buffer (1x)
dNTPs mix (0.5 mM)
RNaseOUT (20 U)

37 °C (60min)
hold at 4 °C

Grandscript (TATAA
Biocenter)

MMLV n.p. Oligo-dT
Rand hex

10 RT buffer (1x)
MgCl2
dNTPs
Stabilizers

22 °C inc. (5 min)
42 °C (60min)
85 °C (5min)
hold at 4 °C

Goscript (Promega) MMLV (80 U) n.p. Oligo-dT (5 µM)
Rand hex (12 µM)

20 RT buffer (1x)
MgCl2 (1.875mM)
dNTPs mix (0.5 mM)
RNase inhibitor (20 U)

70 °C inc. (5 min)
25 °C (5min)
42 °C (45min)
70 °C (15min)
hold at 4 °C

aFinal reaction concentrations are shown. If not indicated, the information is not provided by the manufacturer.
bInitial preincubation time (Inc.) without reverse transcriptase is indicated.
n.p., information not provided by the manufacturer;MMLV, moloney murine leukemia virus; Rand hex, random hexamers.
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Optimal reverse transcription condition enables digital RNA
sequencing with low error rates
To enable ultrasensitive mutation detection at the RNA level, the technical
sequencing error rate needs to be significantly lower than the desired variant
allele frequency detection level. Figure 4a shows themean error rates for the
seven RT conditions and genomic DNA. Highest error rates were detected
for Superscript IV followed by Transcriptor and Primescript II, while
Sensiscript, Omniscript and Goscript generated the least errors. Figure 4b
shows the error rates for the five individualTP53 assays and Supplementary
Fig. 5a, b display the error rates per nucleotide position with and without
UMI-error correction. Superscript IV and Transcriptor produced the
highest error rates for all assays, while Grandscript and Primescript II

generated variable error rates between the assays. Sensiscript, Omniscript
and Goscript generated low error rates similar to the levels observed for
genomic DNA analysis for all TP53 assays. As expected, the number of
non-reference molecules scaled with the total number of analyzed RNA
molecules (Fig. 4c). To assess the benefits of using UMIs for error cor-
rection, we calculated the error correction factor, which is the ratio
between the mean error rate with raw reads and consensus reads, for all
RT conditions (Fig. 4d). The improvement using UMIs varied between
15.8 times for Transcriptor and 352.3 times for Sensiscript, while the
error correction factor for genomic DNAwas 122.7 times. The maximum
mean error rates for the hotspot mutation panel was 0.0055% for
NOTCH1 using Omniscript (Fig. 4e), which were in the same range as for
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tary Data 1.
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Fig. 3 | Reverse transcription properties. a Complementary DNA yield. For RNA
analysis one consensus read corresponds to one cDNAmolecule, while two consensus
reads correspond to one genomic DNA molecule. The Sensiscript cDNA yields are
scaled by a factor of four to compensate for lower amount of loaded RNA into RT and
subsequent SiMSen-Seq. Mean+ 95% CI is shown, n = 3. b Number of consensus
reads for all individual TP53 assays. Mean+ 95% CI is shown, n = 3. c Coefficient of
variation among individual RT conditions calculated using consensus reads.Note that

replicates were performed at RNA level when evaluating RT conditions, n = 3.
dDynamic range of Omniscript. Dilution series ranging from 140–8.75 ng total RNA
(Supplementary Data 2). One sample at 35 ng total RNA was considered outlier and
removed. Linear regression was performed for each assay using the four lowest RNA
concentrations to guide the eye, n = 2–3. e Complementary DNA yield for hotspot
mutation panel.Omniscriptwas usedwith 200, 5 and 1 ng total RNA.Mean+ 95%CI
is shown, n = 3.
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the TP53 assays. The error correction factor ranged between 12.5 times
forNOTCH1 and 165.8 times for KRAS (Fig. 4f). For two assays we found
no errors after UMI correction and could hence not calculate any cor-
rection factor. The same two assays were also the two lowest expressed

genes. We conclude that RT followed by SiMSen-Seq can reduce the
technical mean error rates to <0.01% for the well-performing Omnis-
cript, thus enabling the detection of mutations at <0.1% allele frequency,
which is similar to DNA analysis.
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calculated and compared. Mean+ 95% CI is shown, n = 3. e Error rates for indi-
vidual assays in the hotspot mutation panel. Omniscript was used with 200 ng total
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In general, we observed no or weak correlations between variant allele
frequencies and nucleotide positions for most RT conditions as well as for
genomic DNA, indicating that the sequence context influenced error rates
only to aminor degree (Fig. 5a and Supplementary Fig. 6). Interestingly, we
observed one nucleotide position that generated an error rate between
0.432% and 1.38% for Transcriptor, Superscript IV, Primescript II and
Grandscript, while the error rates for the other RT conditions and genomic
DNAwas<0.075%(SupplementaryFig. 5b).Next,we compared the types of

errors for all RT conditions with genomic DNA as reference (Fig. 5b).
Overall, we observed similar or higher amounts of substitutions, including
transitions and transversions, for all RT conditions comparedwith genomic
DNA. We observed deletions and insertions for all RT conditions except
Sensiscript. However, Sensiscript also generated the lowest cDNA yield and
wemaynot have had enough cDNAmolecules to allow the detection of rare
deletions and insertions. For genomic DNA analysis, we detected no dele-
tions and insertions in the TP53 assays.
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Digital RNA sequencing enables ultrasensitive mutation detec-
tion and transcript profiling of cell-free RNA
To test the ability of our approach to detect low mutant allele fre-
quencies we mixed total RNA from MLS 1765–92 cells with total RNA
from MLS 402–91 cells that is heterozygous at one nucleotide position
in TP53 (Supplementary Fig. 7). The expected mutant allele

frequencies ranged from 25–0.078%. Figure 6a–b show that all mutant
allele frequencies were reliably detected and the number of detected
molecules with mutations were significantly above the background of
wild-type RNA as well as genomic DNA. Supplementary Fig. 8 shows
that the samples with 0.078% mutant allele frequency only could be
detected using UMIs.
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To demonstrate the use of our approach, we designed a breast cancer
panel, covering 15mutations at 14nucleotide positions previously identified
with global RNA sequencing in three breast cancers28. Figure 6c shows the
relative number of consensus reads for matching RNA and DNA samples.
We detected higher number of molecules for two genes (SF3B1 and
ZBTB7A) at RNA level compared with DNA level, while ten times more
molecules were detected at DNA level for four genes (ALOX15, DLG2,
DOCK9 and TTN). Supplementary Fig. 9a–c show the error rates and error
correction factors for the breast cancer panel. We detected 7 out of 15
previously called mutations at RNA level (Fig. 6d, e). The AZIN1mutation
was detected in patients 1 and 2, but unexpectedly also in patient 3. We
detected the samemutations atDNA level, except that noAZIN1mutations
were found. Interestingly, the mutation in AZIN1 (S367G) is a known site
for the ADAR protein family to RNA edit adenosine to inosine29. We
concluded that 8 out of 15 mutations originally called as mutation using
global RNA sequencing data were false positives, i.e., not a single molecule
with the expectedmutation was detected at either RNA or DNA level using
digital RNA and digital DNA sequencing, respectively. Furthermore, to test
the sensitivity to detect mutations at lower allele frequencies, we diluted the
RNA sample from patient 1 withMLS 1765–92RNAand detectedmutated
SF3B1 transcripts even with a 1:64 dilution factor (Supplementary Fig. 9d).

We next extracted cell-free RNA from blood plasma collected from
healthy individuals but the number of cell-free TP53 transcripts were very
low, resulting in non-reproducible sequencing libraries. Therefore, we
developed a panel targeting five sequences in the abundantly expressed
hemoglobulin subunit beta (HBB) gene (Supplementary Fig. 4). For com-
parison, we also analyzed genomic DNA. Figure 7a shows the number of
detectedHBB transcripts andFig. 7bdisplays thenumberofHBB transcripts
per milliliter blood plasma that varied between 2500 and 16000 molecules
for thefiveHBB sequences. Next, we determined themean error rates for all
assays to be <0.005% (Fig. 7c), and the error correction factor using UMIs
was 69.6 times (Fig. 7d). Similar values for error rates and error correction
factor were observed for genomic DNA. Finally, we applied the hotspot
mutation- and breast cancer panel to analyze cell-free RNA (Fig. 7e). We
detectedbetween0 and16moleculespermlplasma,which is in the expected
range for lowly and intermediately expressedgenes inplasma30.As expected,
no mutations were found in the liquid biopsy samples.

Discussion
Digital RNA sequencing using UMIs offers improved possibilities to assess
RNAmolecules, including ultrasensitive mutation detection. In contrast to
standard RNA sequencing protocols31–33, our approach enhances mutation
detection sensitivity through deep sequencing where all initial target
sequences are sequenced multiple times and UMIs correct polymerase-
induced errors.Deep sequencing canbe applied tomost approaches but is in
practice restricted to targeted sequences. For example, a mammalian cell
contains around 100,000 mRNAs and the exome consists of about 20mil-
lion base-pairs34. Assuming 5% of the exome is transcribed to the same
degree, analyzing 1000 cells would require 1012 reads to cover all sequences
once, given that each read covers a 100nucleotides long sequence. To set this
in context, the latest NovaSeq X Plus sequencer only generates up to about
1011 reads. Hence, deep sequencing is currently limited to applications that
rely on targeted sequencing. In our study,we sequenced all targetsmolecules
in the sample multiple times to maximize the sensitivity. The sensitivity is
directly linked to the error rate since a mutation cannot be called with a
lower allele frequency than the estimated error rate. The error correction
factor is thus an estimate of the improvement provided byUMIs using deep
sequencing data. We show that RNA molecules can be profiled with the
same level of sensitivity to detect mutations as DNA analysis, i.e., <0.1%21.

In our approach, we tag cDNA molecules with UMIs that will not
compensate for errors occurring during RT. To compensate for all possible
technical errors during library construction, the RNAmolecules need to be
tagged with UMIs before RT. However, adding UMIs to single-stranded
RNA molecules, for example with ligation, is experimentally challenging.
Some global RNA sequencing approaches incorporates UMIs in the oligo-

dT primer35. These strategies also fail to compensate for errors introduced
during the RT step and are not suitable for targeting sequences that are not
directly upstream of the poly-A tail. Target-specific RT primers with UMIs
mayaddress this issuebutmultiplexing gene-specificRTprimers containing
UMIs is poorly studied, and this strategy still will not correct for errors
occurring during RT.Our data also show that error rates for analyzing RNA
molecules using optimal RT conditions are similar to those for genomic
DNA molecules, suggesting that most errors occur after RT during library
construction or sequencing. This is not surprising since target sequences are
amplified numerous times during both library construction and cluster
generation in the sequencer, while RNA molecules are only reverse
transcribed once.

In SiMSen-Seq, target DNA or cDNA are tagged with UMIs during
three barcoding PCR cycles. The number of errors that is potentially
introduced during the PCR barcoding step is low36 and other digital DNA
sequencing approaches use up to 15 barcoding PCR cycles maintaining low
error rates37. A disadvantage with increasing the number of barcoding PCR
cycles is that thenumber ofUMIsper targetDNAmolecule increases, which
results in lower precisionwhen estimating the original number ofmolecules
in the sample38. Digital PCR39, BEAMing40 and in situ hybridization assays41

are alternative approaches that offer detection of low mutant allele fre-
quencies.However, these strategies are limited to the analysis of single or few
target sequences where prior knowledge of RNA sequence variation is
needed.

For ultrasensitive mutation detection in limiting sample types, such as
fine needle aspirates and liquid biopsies, high cDNAyield is important since
it increases the number of molecules that can be assessed and hence, the
probability tofind rare,mutatedmolecules.Weobserved largedifferences in
cDNA yields between RT conditions as well as between assays targeting
TP53. This variability was expected since secondary and tertiary RNA
structures are known to affect cDNA yield1,2. Consequently, different RT
conditions, including type of reverse transcriptase, reaction buffer, priming
strategy and reaction temperature profile contribute to the cDNA yield. All
tested RT conditions used a blend of random hexamers and oligo-dT as
primers, which is considered optimal for high cDNA yield42. Ultrasensitive
mutation analysis also requires low technical error rates, including both RT
and library construction. Reverse transcriptase generates more errors than
highfidelityDNApolymerases. Thefidelity of the appliedDNApolymerase
is >300 times compared to standardTaqDNApolymerase that has reported
fidelity between 1 × 10−4 and 5 × 10−5 43,44. The reported fidelity of reverse
transcriptases ranges between 1 × 10−4 and 9 × 10−5 45–47. Substitution errors
and sequence rearrangement, such as insertions and deletions, have been
observed for both DNA polymerases and reverse transcriptases. The
observed error rates include all types of errors that occur during nucleic
acids extraction, RT, library construction errors, sequencing and bioinfor-
matics aswell as variants inRNAsequences that have a biological origin.We
observed no direct link between cDNA yields and error rates. For example,
Transcriptor generated the highest cDNA yield and also caused the most
errors, while Superscript IV generated the lowest cDNAyield but caused the
second most errors. Our UMI-based approach corrects for polymerase-
induced errors but not for other types of technical errors that occur in the
experimental steps before SiMSen-Seq, including RNA extraction and RT.

Here, we chose Omniscript for downstream analysis, since this RT
condition generated high cDNA yield combined with low error rates. With
this RT condition, the observed error rates varied between 0% and 0.04%
among all targeted RNA sequences, which were at similar levels as the
corresponding genomic DNA sequences, indicating that the error con-
tribution of the RT step using Omniscipt is at least at the same level as the
errors generated during library construction and sequencing. A low error
rate of RT is critical in our approach since the use of UMIs can only correct
for errors that occur after cDNA synthesis. For example, Omniscript has
about 7.5 times higher sensitivity than Superscipt IV to identify mutations
using the TP53 assays. The dynamic range of Omniscript using different
RNA concentrations was not linear throughout all tested RNA concentra-
tions. This observation was expected and in line with other studies
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Fig. 7 | Detection of cell-free RNA in blood plasma. a Number of detected cDNA
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evaluating RT conditions followed by quantitative PCR2. The RT linearity
may potentially be improvedby optimization of reaction conditions and the
use of carriers. Interestingly, we observed differences in capacity to correct
errors occurring after RT, i.e., variations in the error correction factor
between the various RT conditions.We speculate that this variationmay be
due to properties of specific reverse transcriptases and their ability to reverse
transcribe different RNA sequences as well as RNA modifications45,46. In
conclusion, our data clearly show that theRT step is critical for ultrasensitive
digital RNA sequencing and that the properties of different RT conditions
are highly variable.More sequences need to be assessed to identify an overall
optimal RT condition to provide maximal cDNA yields and minimal
error rates.

In this study,we show that digitalRNAsequencingusingUMIs enables
ultrasensitive mutation detection. Our approach is simple to perform and
flexible in multiplexing. The performance is improved by choosing an
optimal RT condition that provides both high cDNA yield in combination
with low RT error rate, while the use of UMIs eliminates DNA polymerase-
induced errors. We demonstrate that digital RNA sequencing has wide
dynamic range and can be applied to detect lowmutation allele frequencies
as well as to analyze cell-free RNAmolecules extracted from blood plasma.
Ultrasensitive mutation analysis at RNA level is required in applications,
such as assessment of transcriptional mutagenesis and RNA editing since
these arenotpresent at theDNA level. Formutations that exist atDNA level,
it can be beneficial to use RNA, especially when the number of RNA
molecules exceeds that of DNA molecules. To maximize the sensitivity to
detect mutations, combined RNA and DNA analysis should also be con-
sidered.DigitalRNAsequencing enables sensitive and specificRNAanalysis
in numerous basic research and clinical application areas, but additional
studies are needed to determine clinical utility.

Methods
Cell cultures
The myxoid liposarcoma cell lines 1765–92 and 402–91 were cultured in
completemedia, containing RPMI 1640GlutaMAX supplementedwith 5%
fetal bovine serum, 100U/mL penicillin and 100 µg/mL streptomycin (all
Gibco, Thermo Fisher Scientific). Cells were kept at 37 °C and 5% CO2 and
passaged using 0.25% trypsin with 0.5mM EDTA (Gibco, Thermo Fisher
Scientific). Sequencing showed that the cell lines contained no common
dysfunctional or pathogenicmutations, including the inTP53gene48.All cell
lines were routinely screened formycoplasma infections usingMycoplasma
PCR Detection Kit (Applied Biological Materials). Cell line authentication
was performed with the cell line authentication test based on short tandem
repeat analysis performed by Eurofins (Germany) and detection of cell line-
specific fusion oncogenes at RNA level.

Nucleic acids extraction
Total RNA was extracted using QIAcube with the RNeasy Micro Kit
including DNase treatment (all Qiagen), according to the manufacturer’s
instructions. Genomic DNA was extracted using the AllPrep DNA/RNA/
Protein Mini Kit (Qiagen), according to the manufacturer’s instructions.
RNA concentration was determined with a Qubit 3 Fluorometer using the
Qubit RNA High Sensitivity Assay Kit (Invitrogen, Thermo Fisher Scien-
tific). RNA integrity was assessed by capillary electrophoresis (Fragment
Analyzer, Agilent Technologies) using the DNF-471 RNA Kit (Agilent
Technologies), according to the manufacturer’s instructions. The RNA
quality numbers were >7.5 for all cell line samples. Total RNA was stored
at −80 °C.

Circulating total RNA was isolated from blood plasma of healthy
donors purchased from Zenbio. Plasma was mixed 1:1 with QIAzol Lysis
Reagent (Qiagen) and incubated at room temperature for 5 min. The
resulting solution was mixed with chloroform 9:2, followed by cen-
trifugation at 12,000 g at 4 °C for 15min. The clear upper phase was
collected and RNA was extracted with Zymo RNA Clean & Concentrator
kit with DNase treatment (Zymo Research), according to the manu-
facturer’s instructions.

Breast cancer tissue samples
Three primary invasive breast carcinomas that were previously analyzed for
mutations at RNA level were used28. Genomic DNA and total RNA were
extracted from the three fresh-frozen tissueswhere >70%neoplastic content
in each sample was confirmed using touch preparation imprints stained
with May-Grünwald Giemsa (Chemicon). Genomic DNA was isolated
using the QIAamp Fast DNA Tissue Kit (Qiagen), while total RNA was
isolated with the RNeasy Lipid Tissue Mini Kit (Qiagen), according to the
manufacturer’s instructions. The RNA concentration was assessed as
described for cell line derived total RNA. DNA concentration was deter-
mined with Qubit 3 Fluorometer and High Sensitivity dsDNA Quantifi-
cation Kit (Invitrogen, Thermo Fisher Scientific), while RNA integrity was
assessed with Agilent 2100 Bioanalyzer using RNA 6000 Nano Kit (both
Agilent Technologies), providing RIN values between 6.0 and 9.4.

Reverse transcription
Reverse transcription was performed with seven different RT kits in a T100
Thermal Cycler (Bio-Rad Laboratories), according to the manufacturers’
recommendations (Table 1). We used 400 ng total RNA for Transcriptor,
Superscript IV, Primescript II and Goscript, 200 ng total RNA for Omnis-
cript and Grandscript, and 50 ng total RNA for Sensiscript. We compen-
sated for the variable amount of total RNA in either downstream SiMSen-
Seqor in data analysis. ComplementaryDNAwas diluted 1:1with ultrapure
distilled water (Invitrogen, Thermo Fisher Scientific) and stored at−20 °C.
After initial evaluation of RT conditions, we used Omniscript for all
downstreamanalysis. For thebloodplasmaanalysis, theRNAconcentration
was below the limit of detection for Qubit. Hence, the used amount of cell-
free RNA was <10 ng per RT reaction.

Digital sequencing
Simple multiplexed PCR-based barcoding of DNA for ultrasensitive
mutation detection using next-generation sequencing (SiMSen-Seq) was
applied for digital sequencing21. All assays were short to enable detection of
degraded nucleic acids. SiMSen-Seq library construction consists of two
PCR steps followed by library purification. The first step comprised a 10 µL
barcoding reaction with 0.1 U SuperFi Platinum Polymerase, 1 x SuperFi
buffer, 200 µMdNTPmix (all Thermo Fisher Scientific), 0.5M L-Carnitine
(Sigma-Aldrich, Merck), 40 nM of each SiMSen-Seq barcoding primer
(Ultramers, Integrated DNA Technologies, Supplementary Data 3) and
either 2 µL diluted cDNA or 10–40 ng of human genomic DNA (Roche).
The temperature profile was: 98 °C for 30 s; 3 cycles of amplification (98 °C
for 10 s; 62 °C for 6min; 72 °C for 30 s); 65 °C for 15min; 95 °C for 15min
and hold at 4 °C.All ramping rateswere 4 °Cper sec. At the beginning of the
65 °C incubation step, 20 µL TE buffer (pH 8.0, Thermo Fisher Scientific)
containing 30 µg/mL protease from Streptomyces griseus (Sigma-Aldrich,
Merck) was added to terminate the reaction. The second 40 µL adapter PCR
reaction contained 1 xQ5 Hot Start High-Fidelity Mastermix (New Eng-
land BioLabs) and 400 nM of each Illumina adapter primer (desalted,
Sigma-Aldrich,Merck) and 10 µL diluted barcoded PCR product. Standard
Illumina adapter primer sequences were used49. The temperature profile
was: 98 °C for 3min; 30 cycles of amplification (98 °C for 10 s; 80 °C for 1 s;
72 °C for 30 s; 76 °C for 30 s, all with ramping at 0.2 °C/s) and hold at 4 °C.

Each library was analyzed by capillary electrophoresis using the
Fragment Analyzer and the DNF-474 HS NGS DNA kit (Agilent Tech-
nologies), according to the manufacturer’s instructions. Libraries were
diluted based on their specific product concentrations using EB buffer
(Qiagen) supplemented with 0.1% Tween (Sigma-Aldrich, Merck). Pooled
libraries were purified with Pippin Prep using a 2% agarose gel cassette for
100–600 base pairs fragment sizes (both Sage Science). The purified library
size was evaluated on a Fragment Analyzer using the DNF-474 HS NGS
DNA kit. Sequencing was performed on either a MiniSeq using a High
Output Reagent Kit or a NextSeq 550 using aNextSeq 500/550MidOutput
kit v2.5 (all Illumina). All sequencingwere performed in single-end and 150
base pairs mode. Twenty percent PhiX Control v3 (Illumina) and a final
library concentration of 1.8 pM was used in MiniSeq, while 10% PhiX and
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1.3 pM library concentration was used in NextSeq 550. The sequencing
depth per target sequence is shown in Supplementary Data 4.

Sequencing data was processed with UMIErrorCorrect version 0.2950.
Unique molecular identifiers were trimmed off and then aligned to the
reference genome. Next, reads were grouped into consensus reads based on
UMI families to eliminate polymerase-induced errors. We applied a cut-off
of at least three reads per UMI to generate consensus reads. The error rates
were calculated as the total number of non-reference reads divided by the
total number of reads per nucleotide position. Next, the mean for all posi-
tions in all assayswas estimated.Nucleotide variants related to known single
nucleotide polymorphisms, pseudogenes and RNA editing were excluded
from analysis.

Statistics and reproducibility
All experiments were performed in three replicates unless otherwise stated.
Data are presented as mean ± 95% confidence interval (CI). Unpaired
Student’s t-test and two-way ANOVA with Šidák correction were used for
statistical mutation analyses with GraphPad Prism 10.1.2 (GraphPad
Software).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw sequencing data in FASTQ format is available at the NCBI Sequence
Read Archive under submission ID PRJNA967219. The data behind the
graphs in the manuscript and Supplementary Figures. are shown in Sup-
plementary Data 5 and 6, respectively.

Code availability
The UMIErrorCorrect pipeline with scripts is published50 and available at
Github: https://github.com/stahlberggroup/umierrorcorrect. No custom
code is used.
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