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UMIErrorCorrect and UMIAnalyzer: Software 
for Consensus Read Generation, Error Correction, 

and Visualization Using Unique Molecular Identifiers
Tobias Österlund ,a,b,c Stefan Filges ,c Gustav Johansson,b,c,d and Anders Ståhlberg a,b,c,*

BACKGROUND: Targeted sequencing using unique mo
lecular identifiers (UMIs) enables detection of rare vari
ant alleles in challenging applications, such as cell-free 
DNA analysis from liquid biopsies. Standard bioinfor
matics pipelines for data processing and variant calling 
are not adapted for deep-sequencing data containing 
UMIs, are inflexible, and require multistep workflows 
or dedicated computing resources.

METHODS: We developed a bioinformatics pipeline 
using Python and an R package for data analysis and 
visualization. To validate our pipeline, we analyzed 
cell-free DNA reference material with known mutant al
lele frequencies (0%, 0.125%, 0.25%, and 1%) and 
public data sets.

RESULTS: We developed UMIErrorCorrect, a bioinfor
matics pipeline for analyzing sequencing data containing 
UMIs. UMIErrorCorrect only requires fastq files as in
puts and performs alignment, UMI clustering, error cor
rection, and variant calling. We also provide 
UMIAnalyzer, a graphical user interface, for data min
ing, visualization, variant interpretation, and report gen
eration. UMIAnalyzer allows the user to adjust analysis 
parameters and study their effect on variant calling. 
We demonstrated the flexibility of UMIErrorCorrect 
by analyzing data from 4 different targeted sequencing 
protocols. We also show its ability to detect different 
mutant allele frequencies in standardized cell-free 
DNA reference material. UMIErrorCorrect outper
formed existing pipelines for targeted UMI sequencing 
data in terms of variant detection sensitivity.

CONCLUSIONS: UMIErrorCorrect and UMIAnalyzer 
are comprehensive and customizable bioinformatics 
tools that can be applied to any type of library prepar
ation protocol and enrichment chemistry using UMIs. 

Access to simple, generic, and open-source bioinformat
ics tools will facilitate the implementation of UMI-based 
sequencing approaches in basic research and clinical 
applications.
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Introduction

The rapid development of massive parallel sequencing 
techniques allows investigation of most types of DNA 
samples and sequences to gain insight into genomic al
terations (1, 2). In healthcare, DNA sequencing is 
used in a wide range of applications, such as cancer 
(3–5), genetic mosaicism (2, 6, 7), immunology (8, 9), 
forensics (10), metagenomics (11), and infectious dis
eases (12). Cancer applications include diagnostics, 
prognostics, and precision medicine (13, 14). Tumor bi
opsies are commonly analyzed with either targeted or 
whole-genome sequencing. Despite constantly improv
ing therapies and diagnostics, there is an emerging 
need to monitor patients over time to determine treat
ment efficacy as well as to detect treatment resistance 
and relapse as early as possible. Normally, tissue biopsies 
cannot be collected repeatedly. Instead, minimally inva
sive liquid biopsies can be longitudinally collected from 
body fluids, such as blood and urine (13–15). 
Circulating tumor-DNA (ctDNA) is released from the 
tumor into the circulation through apoptosis, necrosis, 
and active secretion and is thus considered a useful bio
marker in cancer management (16, 17). For most clinic
ally relevant applications the concentration of ctDNA in 
a typical blood plasma sample is low, even down to the 
range of single ctDNA molecules (18).

Standard sequencing with conventional methods 
for variant calling only allows detection of mutant allele 
frequencies (MAFs) down to 1% to 5% (19–21), which 
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is not sufficient for several clinical ctDNA applications, 
requiring a sensitivity well below 1% MAF using low 
DNA concentrations (13, 14, 21). There are several 
sources of sequencing errors, but most errors are 
polymerase-induced, generated during library con
struction and sequencing (22, 23). To improve sequen
cing sensitivity, unique molecular identifiers (UMIs), 
also referred to as molecular barcodes, can be used. 
The UMI typically consists of a randomized 8 to 12 
nucleotides long sequence, which is attached to the 
DNA fragments in the initial library preparation step 
(5, 24). During library construction and sequencing, 
each target DNA molecule will be amplified with its 
specific UMI, enabling sequence reads with the same 
UMI to be traced back to the same original DNA 

molecule (Fig. 1, A). By generating consensus reads 
for the DNA molecules with the same UMI, sequen
cing errors are efficiently reduced. In some approaches, 
the UMIs also allow for accurate quantification, since 
each original molecule is only counted once (i.e., 
PCR duplicates are removed) (25). Several experimen
tal methods have been developed for UMI-based se
quencing including PCR-based protocols, such as 
Safe-SeqS (5), QiaSeq (26), and simple multiplexed 
PCR-based barcoding of DNA for ultrasensitive muta
tion detection using next-generation sequencing 
(SiMSen-Seq) (27), as well as hybridization 
capture-based-approaches, such as duplex sequencing 
(24) and circle sequencing (28). Despite the common 
use of UMIs, downstream data analysis is performed 

Fig. 1. UMIErrorCorrect pipeline. (A), Principle of error correction using UMIs. Each template DNA mol
ecule is barcoded with a UMI. UMIs are then used to correct for polymerase-induced errors and uneven 
amplification. The red crosses represent a true mutation in the original DNA molecule, while blue crosses 
represent polymerase-induced errors. The use of UMIs enables recovery of original molecules through the 
formation of consensus reads; (B), The UMIErrorCorrect workflow consists of four subprocesses that can 
be executed either by a single command or by running the 4 scripts sequentially. The input files are either 
single- or paired-end fastq files, with an optional BED file containing target DNA coordinates used for an
notation. UMIErrorCorrect output data and files are shown in Table 1; (C), Example of library sequence 
context using SiMSen-Seq. The UMI (-ul) and spacer lengths (-sl) are specified in UMIErrorCorrect to de
scribe the sequence context, based on the library construction protocol used. For SiMSen-Seq the UMI 
and spacer lengths are 12 and 16 nucleotides, respectively. Examples of other UMI-based approaches 
are shown in Supplemental Fig. 1.
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with method-specific bioinformatics tools that are ad
justed to specific constraints, limiting the possibilities 
to compare data sets. Several software tools are also 
not available as open-source, minimizing the possibil
ities to compare workflows and applied algorithms. 
In addition, existing tools often require multistep 
workflows and dedicated computing resources.

Here, we developed Unique Molecular Identifier 
Error Corrector (UMIErrorCorrect), an open-source 
analysis pipeline for targeted sequencing data with 
UMIs, designed to be easy and straightforward to install 
and use. The pipeline includes a variant caller to assess 
low-frequent variants. We also provide UMIAnalyzer 
and UMIVisualizer, an R package, and a graphical 
user interface implemented as an R Shiny app, for 
data analysis and visualization of sequencing data pro
cessed with UMIErrorCorrect. We demonstrate the 
use of UMIErrorCorrect and UMIVisualizer by analyz
ing standardized reference material with known MAFs 
using SiMSen-Seq and compare the performance with 
other pipelines. We also analyzed publicly available 
data sets generated by 3 different experimental ap
proaches: Roche Avenio, QiaSeq, and Archer. We 

show that UMIErrorCorrect can be applied to any 
data set with UMIs and provide a generic and open- 
source bioinformatics workflow that enables users to 
compare and evaluate different data sets. This will facili
tate the standardization and clinical implementation of 
UMI-based sequencing approaches.

Materials and Methods

UMIERRORCORRECT PIPELINE

The UMIErrorCorrect pipeline is open source and im
plemented in Python. The pipeline was implemented 
and tested using Python version 3.6.9. Details regarding 
the implementation of UMIErrorCorrect can be found 
in the online Supplemental Material and Methods.

LOW-FREQUENCY ALLELE VARIANT CALLER

A low-frequency variant caller was developed, where the 
probability of the maximum nonreference allele not 
being background noise was calculated. For mathemat
ical derivation of the variant caller, see Supplemental 
Material and Methods. UMIErrorCorrect will provide 

Table 1. UMIErrorCorrect output files.

Output file Example and file type Description
Input to 

UMIAnalyzer

Consensus reads Sample1_consensus_reads.bam 

Sample1_consensus_reads.bam.bai

Alignment of consensus 

reads and indexes

Optional

Consensus reads 

tab-separated 

values

Sample1_cons.tsv Table with consensus allele 

counts per nucleotide 

position

Yes

VCFa Sample1.vcf Called variants No

Summary statistics Sample1_summary_statistics.txt Coverage of raw and 

consensus reads per 

region

Yes

Target coverage Sample1_target_coverage.txt Number of raw and 

consensus reads on target

No

Histogram of variants Sample1_histogram.png Histogram showing 

probability distribution of 

called variants

No

UMIs in header fastqs Sample1_umis_in_header_R1.fastq.gz 

Sample1_umis_in_header_R2.fastq.gzb

Raw reads with UMIs and 

spacers removed

No

Raw reads Sample1.sorted.bam 

Sample1.sorted.bam.bai

Alignment of raw reads and 

indexes

No

aVariant call format. 
bFor single-end sequencing samples, this file is missing.
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information about count, frequency, and allele type of 
the maximum nonreference allele. The positions with 
nonreference allele counts higher than zero will be 
subjected to variant calling. The probability of the non
reference allele count being a background error was 
modeled using the beta-binomial distribution. The 
beta prior distribution was fitted to background errors 
of a typical SiMSen-Seq data set (for details, see 
Supplemental Materials and Methods). The default 
Q-value cutoff for variant calling is set to Q ≥ 20 corre
sponding to a P value cutoff ≤ 0.01.

UMIANALYZER R PACKAGE AND UMIVISUALIZER APP

The code for the R package UMIAnalyzer is available for 
R versions ≥ 4.1.0. UMIAnalyzer can be installed from 
the comprehensive R archive network using the 
command install.packages(“umiAnalyzer”). The visual
ization app, UMIVisualizer, is built with Shiny, a 
framework for making interactive web-applications in 
R. UMIVisualizer can be started with the command 
umiAnalyzer::runUmiVisualizer(). UMIAnalyzer pro
vides functions and classes for reading, analyzing, and 
plotting data processed with UMIErrorCorrect. 
UMIAnalyzer functions also serve as the backend for 
the UMIVisualizer app.

SIMSEN-SEQ

We analyzed Seraseq ctDNA Mutation Mix v2 
(Seracare), with known MAFs using the SiMSen-Seq 
protocol as described earlier (27). For details on library 
construction and sequencing, see Supplemental 
Material and Methods. The sequencing data were up
loaded to the NCBI Sequence Read Archive repository 
(PRJNA788522 and PRJNA507366).

PUBLIC DATA SETS

Two publicly available data sets were also used and 
analyzed from the NCBI Sequence Read Archive, 
PRJNA577992 (Roche Avenio and QiaSeq) and 
PRJEB31811 (Archer).

Results

DEVELOPMENT OF UMIERRORCORRECT: A GENERIC AND 

EASY-TO-USE BIOINFORMATICS TOOL FOR SEQUENCING 

READS WITH UMIS

Here, we developed UMIErrorCorrect, a generic and 
easy-to-use bioinformatics pipeline that processes se
quencing data containing UMIs, requiring only fastq 
files as input. UMIErrorCorrect is implemented in 
Python, and the schematic workflow is shown in 
Fig. 1, B. The complete pipeline includes preprocessing, 
mapping, error correction, allele counting, and variant 
calling. The pipeline starts by a single command 

(run_umierrorcorrect.py). In the first step (preprocess.py), 
the UMI and spacer sequences are trimmed off from all 
reads and the UMI is added to the header of the fastq 
file. Examples of UMI setups are shown in Fig. 1, C
and Supplemental Fig. 1. In the second step (run_map
ping.py), all reads are aligned to an indexed reference 
genome of choice using the Burrows–Wheeler align
ment tool, bwa mem (29). In the third step (umi_error_
correct.py), reads are grouped into UMI families based on 
target DNA region (i.e., chromosomal position and 
UMI sequence). To allow for sequencing errors in the 
UMI sequence, an edit-distance threshold is introduced 
(default edit distance ≤1), and UMI clustering is per
formed similarly to the UMI clustering in UMI tools 
(30). Next, error-corrected consensus reads are gener
ated based on all reads in each UMI family. The consen
sus read generation provides one consensus read per 
UMI family. This step corrects for both 
polymerase-induced errors and uneven amplifications 
(Fig. 1, A). For annotation purposes, an optional 
Browser Extensible Data (BED) file, containing 
chromosomal coordinates and names for all targeted se
quencing regions can be provided by the user. 
UMIErrorCorrect generates the same results without 
the BED file, but without annotation of the targeted 
regions.

UMIERRORCORRECT OUTPUT FILES

The UMIErrorCorrect pipeline produces 11 output data 
files per sample (Table 1). Supplemental Table 1 con
tains an example of the output file content for a sample 
analyzed with SiMSen-Seq. A consensus read BAM file 
is generated, representing the alignment of all consensus 
reads. The consensus group size cutoff parameter (i.e., 
the minimal number of raw reads required to generate 
a consensus read) is set to 2 when generating the consen
sus read BAM file.

The cons.tsv file is a tab-separated table with each 
row representing one position in the reference genome, 
after error correction and consensus read generation. 
The columns show information about the nucleotide 
counts (A, C, G, and T), insertions, deletions, and un
known bases for each nucleotide position. The max
imum nonreference allele is presented in the last 3 
columns of the cons.tsv file (genotype change, variant al
lele count, and variant allele frequency). A variant call 
format file is provided that includes the nucleotide posi
tions with high probability of being true variants com
pared to the background. The developed variant caller 
is designed for UMI sequencing data, enabling detection 
of low variant allele frequencies. The background error 
distribution is modeled using a beta-binomial distribu
tion (26, 31). The default Q-value cutoff for the variant 
caller is set to Q ≥ 20, representing a probability P < 
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0.01 of the detected variant allele not being a back
ground error. For additional details about the developed 
variant caller, see Supplemental Material and Methods.

The summary statistics file is a tab-separated text 
file showing the number of raw reads and consensus 
reads that overlap with each targeted region. The target 
coverage file shows the percentage of all raw reads and 
consensus reads that cover the target regions specified 
in the input BED file. A low percentage of target cover
age indicates off-target and unspecific library amplifica
tion and/or enrichment. The histogram.png file shows 
an image of the distribution of Q-values (i.e., probabil
ity scores for variants present in the variant call format 
file). The fastq files with UMIs in header and the raw 
reads BAM file are intermediate files, including all 
reads before error correction and consensus read 
generation.

UMIVISUALIZER ENABLES DATA INTERPRETATION AND 

VISUALIZATION

After UMIErrorCorrect, the directories with the output 
files for all analyzed samples can be loaded into R using 
the R-package UMIAnalyzer and the R shiny app 
UMIVisualizer. Both allow the user to interactively 
explore and visualize the experimental data, simplifying 
the interpretation of results generated by 
UMIErrorCorrect. UMIAnalyzer generates an UMI ex
periment class object by loading and merging the 
cons.tsv files and the summary statistics files for all sam
ples. The consensus reads BAM file is also used to visu
alize UMI family size distribution with a histogram. A 
workflow describing the graphical user interface of 
UMIVisualizer is shown in Fig. 2. By default, 
UMIVisualizer will show both the variants and the 
background positions with background errors. The 
user can then vary different parameters to investigate 
their effects on variant calling and background noise. 
The next step is to select which samples and targets 
(i.e., assays) are of interest to analyze. Next, the user 
can select the consensus group size cutoff, the min
imum alternative allele consensus read count, or the 
false discovery rate cutoff (Fig. 2, A). Downstream re
sults are shown both in table format and in the data 
viewer and plots section (Supplemental Fig. 2). There 
are also functions for quality controls, such as plots 
showing the number of consensus reads for each target, 
the effects of consensus group size cutoffs on the num
ber of consensus reads, and a histogram of the UMI 
group size distribution for each sample (Supplemental 
Fig. 2). If the user is only interested in predefined nu
cleotide positions (i.e., hotspot nucleotide positions for 
mutations), another BED file with positions may be 
imported into UMIVisualizer, resulting in a simplified 
data result table. UMIVisualizer contains several func
tions to combine samples and to plot longitudinal data 

(Fig. 2, B). A descriptive metadata file can be uploaded 
for each sample to add categorical data used for gener
ating more user-customized plots. UMIVisualizer can 
also generate an html report, summarizing variants 
and plots.

COMPREHENSIVE SIMSEN-SEQ DATA ANALYSIS USING 

UMIERRORCORRECT AND UMIVISUALIZER

To demonstrate the functionality of UMIErrorCorrect 
and UMIVisualizer, we generated a SiMSen-Seq data 
set using Seracare ctDNA reference material, targeting 
5 hot-spot mutation sequences (Figs. 3, A–D). Four dif
ferent MAFs (0%, 0.125%, 0.25, and 1%) were se
quenced in triplicates using 20 ng DNA to an 
estimated depth of 3.3 reads per UMI. Figures 3, A
and B show summary sequencing statistics. The mean 
background error for all analyzed nucleotide positions 
was 0.013%, and the maximum detected background 
error for any specific nucleotide position was 0.244% 
found in the TP53_a assay. Figure 3, C shows that the 
predefined mutations were detectable at expected 
MAFs for all targeted sequences. All 5 mutations were 
significantly above the background error rate for each 
specific nucleotide position at 0.125% MAF when com
paring the mutated nucleotide positions with the same 
position in wild-type (2-sample t-test, P ≤ 0.05). 
However, if we instead compared the allele frequencies 
of the mutated positions with all nucleotide positions 
within the 5 amplicons, only the mutations in 
PIK3CA_b and TP53_a were significantly above the 
background error levels at 0.125% MAF, while the mu
tations in KIT and TP53_b were significant at ≥0.25% 
MAF (2-sample t-test, P ≤ 0.05).

An alternative approach is to use the variant caller 
in UMIErrorCorrect. The output Q-value represents 
the probability that the observed MAF is not a back
ground error. Figure 3, D shows the sensitivity (i.e., 
the ability to detect mutations) and the specificity (i.e., 
the ability to avoid false positives) to detect variants. 
The sensitivity was calculated as the true positive rate 
(i.e., the percentage of the 5 predefined mutations that 
were identified in all replicates). The specificity was cal
culated as 1 − the false-positive rate (i.e., the number of 
background errors divided by the number of back
ground positions). The sensitivity and specificity are 
shown as a function of 3 Q-value cutoffs (Q ≥ 10, ≥ 
15, and ≥ 20) and 2 consensus group size cutoffs (con
sensus group size ≥ 3 and ≥ 10). For the consensus 
group size cutoff ≥ 3, at the lowest Q-value cutoff 
(Q ≥ 10), the sensitivities were 46.7%, 93.3%, and 
100% to detect 0.125%, 0.25%, and 1% MAF, respect
ively. The corresponding specificities were 100%, 
100%, and 99.7%. Increased Q-value cutoff to ≥15 de
creased the sensitivity to 26.7% and 73.3% at 0.125% 
and 0.25% MAF, respectively, while the sensitivity at 
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1% MAF remained at 100%. The specificities at Q ≥ 
15 were 100% for all MAFs. A Q-value cutoff ≥ 20 
resulted in sensitivities at 13.3%, 40.0%, and 100%, 
respectively, and the specificities remained at 100%. 
Changes in the second parameter, consensus group 
size cutoff, decreased the sensitivity for all 3 MAFs 
and Q-values when the consensus group size cutoff in
creased from ≥3 to ≥10, while the specificity remained 
the same.

To study different sequencing parameters using 
UMIVisualizer further, we sequenced 20 ng SeraCare 
ctDNA to an estimated depth of 10 reads per UMI. 
We also analyzed 5 ng SeraCare ctDNA with a sequen
cing depth of 3.3 and 10 reads per UMI, respectively. 
The results are presented in Supplemental Fig. 3.

UMIERRORCORRECT AND UMIVISUALIZER ARE GENERIC TOOLS 

TO ANALYZE AND VISUALIZE UMI-CONTAINING DATA

UMIErrorCorrect and UMIVisualizer are generic tools, 
suitable for any experimental protocol or sequencing 
platform. To demonstrate their use, we analyzed 3 pub
licly available data sets, utilizing UMIs generated by 3 
different methods: Roche Avenio (32), QiaSeq (32), 
and Archer (7) (Supplemental Table 2). The configur
ation of the UMI and spacer sequences for the 3 meth
ods are shown in Supplemental Fig. 1. The Roche 
Avenio panel is a target capture-based panel that targets 
15 genes, including 322 sequence regions. The median 
coverage for the Roche Avenio panel was 206, using con
sensus group size cutoff ≥ 3 (i.e., the median number of 

Fig. 2. Graphical user interface of UMIVisualizer. (A), For each sample, 3 of the output files generated by 
UMIErrorCorrect (cons.tsv, summary_statistics.txt, and consenus_reads.bam) are loaded into R Shiny App 
UMIVisualizer. The user can define which data to analyze and visualize them using different parameter set
tings. The output consists of tables and plots summarizing all selected results. Examples from the 
UMIVisualizer are presented in Supplemental Fig. 2; (B), Optional functions in UMIVisualizer.
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Fig. 3. Validation of UMIErrorCorrect and UMIVisualizer using SiMSen-Seq and standardized reference 
materials. (A), Summary sequencing statistics. Raw reads coverage represents the number of reads 
mapped to the target before consensus sequence generation. Consensus 3 coverage and consensus 10 
coverage are the coverage of consensus reads when using consensus group size cutoff ≥3 and ≥10, re
spectively; (B), Density plot showing the UMI family size distribution. The ggplot geom_density() function 
was used to smoothen the curves for values < 10. n = 3; (C), Detection of MAFs in Seracare ctDNA refer
ence materials. The expected variants are shown in blue together with maximum (orange) background er
ror for any nucleotide position and mean (yellow) background error for all nucleotide positions. The 
SiMSen-Seq panel used in this experiment consists of 5 assays targeting sequences in KIT, PIK3CA, and 
TP53. The assay PIK3CA_a contained no predefined mutation, while the assay TP53_b contained 2 prede
fined mutations. Mean ± SE is shown for consensus group size ≥ 3. n = 3; (D), Sensitivity and specificity to 
detect mutations using different cutoff values for different consensus group sizes and Q-values. n = 3.
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UMIs per target sequence was 206) (Table 2). The 
QiaSeq panel is an amplicon-based panel that targets 
275 genes, including 4427 amplicons. The median 
coverage for the QiaSeq panel was 2010. Roche 
Avenio and QiaSeq data sets also contained spiked-in 
variants (32), and the variants identified after removing 
variants found in healthy control samples are shown in 
Supplemental Table 3 using a Q-value cutoff ≥ 15. 
The Archer panel was designed to target variants causing 
genetic disorders (7) and is a target capture-based panel 
that covers 185 genes and 270 targets. The median 
coverage for the Archer panel was 156 (Table 2), and 
the detected genetic variations are shown in 
Supplemental Table 3.

Discussion

UMI-based error correction in sequencing data enables 
ultrasensitive detection and quantification of variants. 
This ability provides the basis for the development of 
novel applications in cancer management, such as 
screening, diagnostics, monitoring of treatment efficacy, 
detection of treatment resistance, minimal residual dis
ease, and relapse at an early stage (13, 14, 33, 34). 
Here, we developed a Python pipeline for handling 

sequencing data with UMIs, including alignment, 
UMI clustering, error correction, and variant calling. 
Further, we developed an accompanying R package for 
analyzing and visualizing UMI-corrected data.

Several variant calling approaches for targeted se
quencing with UMIs are published, including 
DeepSNVMiner (35), MAGERI (36), smCounter2 
(26), and UMI-VarCal (37). These bioinformatics tools 
are publicly available, except smCounter2, which is only 
available upon request from Qiagen. DeepSNVMiner 
uses a simple heuristic consensus read count threshold 
and does not include any model for estimating back
ground errors. Simple count thresholds often have sub
stantially higher false-positive rates than approaches that 
explicitly model background noise (26). Therefore, 
MAGERI and smCounter2 use a beta-binomial model 
for variant calling, by estimating each type of nucleotide 
change individually. However, smCounter2 could not 
reach reliable estimates for rare nucleotide variants and 
is instead approximating them (26). MAGERI requires 
a dedicated computing environment and uses a single 
reference data set to construct its background error mod
el (36), which may be problematic when comparing dif
ferent types of technologies and data sets (26) since, for 
instance, the choice of DNA polymerase may affect the 
error profile (23, 38). UMIErrorCorrect also uses a beta- 

Table 2. Target coverage per analyzed data sets.

Data Set Method
Median consensus coverage per 

targeta CV (%)b
Maximum consensus coverage per 

targeta CV (%)b

2 Roche Avenio 206 ± 27 18.2 333 ± 83 37.5

3 QiaSeq 2010 ± 39 13.3 472 ± 116 25.1

4 Archer 157 ± 29 18.6 269 ± 101 24.5

aMean ± SE is shown for median and max consensus coverage per target using consensus group size cutoff ≥ 3. 
bCoefficient of variation for median and maximum consensus coverage per target.

Table 3. Comparison between UMIErrorCorrect and 2 other UMI-based variant callers.

Sensitivity (%) Specificity (%)

Time per 
sample(s)

Peak memory 
size (GB)Methoda

0.125% 
MAF

0.25% 
MAF

1.0% 
MAF

0.125% 
MAF

0.25% 
MAF

1.0% 
MAF

UMIErrorCorrectb 46.7 93.3 100 100 100 99.7 32.5 2.05

MAGERIc 33.3 40.0 40.0 98.5 99.6 98.7 11.1 257.8

SmCounter2d 0 0 53.3 100 100 99.7 73.2 0.44

aUMI-VarCal and DeepSNVMiner were not included in the comparison, since they require paired-end sequencing data. 
bUsing default parameters and Q ≥ 10. 
cUsing default parameters and Q ≥ 20 (36). 
dUsing default parameters (26).
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binomial distribution to model the background error. 
Instead of modeling different nucleotide substitution 
types, UMIErrorCorrect models the maximum nonre
ference allele count in relation to the coverage at each 
position regardless the type of nucleotide change. An ad
vantage of smCounter2 and UMIErrorCorrect is that 
both approaches allow the users to train the background 
error model with their own reference data set. 
UMI-VarCal uses a custom pileup algorithm and then 
uses sequencing quality scores to model the background 
error rates. However, most errors that occur during 
amplification and sequencing should be corrected using 
the UMI clustering alone, whereas errors introduced 
during the first cycle of barcoding or errors from chem
ical modification of the original DNA template can have 
high base quality scores that are not accounted for in this 
approach (36). Furthermore, UMI-VarCal does not 
have the functionality to interface with an alignment 
tool and therefore requires the user to perform this 
step separately, whereas MAGERI does not require 
any external tools for mapping. UMIErrorCorrect and 
smCounter2 require a preinstallation of bwa although 
the containerized version of UMIErrorCorrect works 
out of the box using either Docker or Singularity.

To validate our pipeline, we sequenced ctDNA ref
erence material using a targeted SiMSen-Seq panel. At 
0.25% and 1% MAF, the sensitivity was 93.3% and 
100%, respectively, using a Q-value ≥10 and consensus 
group size ≥ 3, while the sensitivity was 46.7% for the 
most challenging variant calling scenario (i.e., 0.125% 
MAF). To evaluate the overall performance of 
UMIErrorCorrect, we compared our results with the 
outputs of MAGERI (36) and SmCounter2 (26) 
(Table 3). UMIErrorCorrect displayed higher sensitivity 
compared to both MAGERI and SmCounter2 for all 
different MAFs. In the most challenging scenario with 
MAF 0.125%, the sensitivity for UMIErrorCorrect 
was 46.7%, compared to 33.3% and 0% for MAGERI 
and SmCounter2, respectively. The specificity was equal 
for UMIErrorCorrect and smCounter, and both showed 
higher specificity than MAGERI.

The amplicon coverage ranged from 3139 to 4922 
consensus reads in our SiMSen-Seq data set using 20 ng 
DNA sequenced to a depth of 3.3 reads per UMI. We 
observed a significant drop in sensitivity for the 
0.125% MAF samples. This was expected due to sam
pling and DNA fragmentation (39). At the lowest cover
age, this corresponds to less than 4 mutated molecules at 
0.125% MAF and 6 mutated molecules at the highest 
coverage. At 0.125% MAF, the number of mutated 
reads is at the same magnitude as the background noise, 
making variant calling challenging. In line with these 
data, the sensitivity to detect few mutated reads was 
clearly different when comparing data using different 
DNA concentrations, 5 and 20 ng DNA, respectively. 

One approach to detect low-frequency variants is to low
er the Q-value cutoff. However, lowering the Q-value 
cutoff increases the risk of including false positives. 
The user can therefore also include a minimum allele 
count threshold specifying the minimal number of con
sensus reads with the variant allele. Another strategy to 
ensure that called variants are true is to increase the con
sensus group size cutoff. Compared to other relevant 
variant callers, UMIErrorCorrect and UMIVisualizer 
provide a flexible framework to adjust multiple variables 
and visualize their effect on variant calling as well as to 
evaluate and optimize variant calling settings for specific 
constraints and applications.

In summary, UMIErrorCorrect, UMIAnalyzer, and 
UMIVisualizer provide an all-in-one pipeline that requires 
only raw sequencing data as input and enables the user to 
choose their own mode of analysis. They provide a variant- 
calling algorithm with a customizable background error 
model as well as facilitate data exploration, interpretation, 
and visualization for nonspecialist users. The pipeline is ag
nostic toward library preparation protocol and enrichment 
chemistry and can be applied to data generated by any com
mercial panels, such as Roche Avenio, QiaSeq, and Archer.

Supplementary Material

Supplementary material is available at Clinical Chemistry 
online.
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